Loading...
Search for: hyper-redundant-manipulator
0.006 seconds

    Optimization, Fabrication and Utilization of a New Tendon Actuated Manipulator with Lockable Joints

    , M.Sc. Thesis Sharif University of Technology Shafaei, Mohsen (Author) ; Alasty, Aria (Supervisor) ; Salarieh, Hassan (Supervisor)
    Abstract
    Serpentine manipulators are a kind of hybrid manipulators that have a large number of joints and degrees of freedom. Due to their high flexibility, they have a great potential to work in constrained environment that filled with obstacles. One of the main problems of this type of manipulators is high weight and controlling difficulties. Many researches have been done to achieve lighter weight and simplify control methods of hyper-redundant manipulator. One way is putting the actuators in the base of the manipulator and transferring the actuator forces by cable. In this way, one cable and one actuator per controllable DOF is needed. Therefore, the weight and cost will increase dramatically... 

    Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

    , Article Robotica ; Volume 31, Issue 7 , 2013 , Pages 1073-1084 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Korayem, M. H ; Sharif University of Technology
    2013
    Abstract
    Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators is a new practical problem in robotics. The problem concerns with determining the type of each manipulator module from among several specific types, so that the manipulator could reach several specified target frames with the lowest error. This paper suggests using a breadth-first search method and a workspace mean frame to solve this problem. To reduce errors, two heuristic ideas are proposed: two-by-two searching method and iteration. The effectiveness of the proposed method is verified through several numerical problems  

    Design, Simulation and Control of a New Tendon Actuated Manipulator With Lockable Joints

    , M.Sc. Thesis Sharif University of Technology Honarvar, Mohammad (Author) ; Alasty, Aria (Supervisor) ; Salarieh, Hasan (Supervisor)
    Abstract
    Hyper-redundant manipulators have large number Degrees of Freedom. Because of their redundancy, such manipulators have the advantage of obstacle avoidance, overcoming singularities and intrusion into highly constrained environments. The most challenging task in designing hyper-redundant manipulators is the synthesis of actuating mechanisms with appropriate kinematics and effective power supply. Most of previous techniques in implementing hyper-redundant robots have the disadvantages of: -Using large number of actuators, -Heavy weight due to large number of actuators, -Complexity of the control system due to need of synchronizing subsets of motors. In this thesis a novel hyper redundant... 

    Path planning for a hyper-redundant manipulator with lockable joints using PSO

    , Article International Conference on Robotics and Mechatronics, ICRoM 2013 ; 2013 , pp. 224-229 ; ISBN: 9781467358118 Taherifar, A ; Alasty, A ; Salarieh, H ; Boroushaki, M ; Sharif University of Technology
    Abstract
    In this paper, the path planning problem of special hyper-redundant manipulator with lockable joints is solved using particle swarm optimization. There is a locking mechanism in each link of this tendon-actuated manipulator. At any time, all links of the manipulator must be locked except one. Then by pulling the cables, the configuration of the corresponding link will change and the manipulator will tilt to its new position. Therefore, by unlocking the links in sequence and pulling the cables, any desirable configuration of manipulator can be reached. In path planning problem, the desired path of the end-effector is given and the optimum sequence of switching (discrete) and the optimum... 

    Path planning for a hyper-redundant manipulator with lockable joints using PSO

    , Article International Conference on Robotics and Mechatronics, ICRoM 2013 ; Feb , 2013 , Pages 224-229 ; 9781467358118 (ISBN) Taherifar, A ; Alasty, A ; Salarieh, H ; Boroushaki, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the path planning problem of special hyper-redundant manipulator with lockable joints is solved using particle swarm optimization. There is a locking mechanism in each link of this tendon-actuated manipulator. At any time, all links of the manipulator must be locked except one. Then by pulling the cables, the configuration of the corresponding link will change and the manipulator will tilt to its new position. Therefore, by unlocking the links in sequence and pulling the cables, any desirable configuration of manipulator can be reached. In path planning problem, the desired path of the end-effector is given and the optimum sequence of switching (discrete) and the optimum... 

    A new obstacle avoidance method for discretely actuated hyper-redundant manipulators

    , Article Scientia Iranica ; Volume 19, Issue 4 , August , 2012 , Pages 1081-1091 ; 10263098 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, a new method is proposed for solving the obstacle avoidance problem of discretely actuated hyper-redundant manipulators. In each step of the solution, the closest collision to the base is removed and then the configuration of the next part of the manipulator is modified without considering the obstacles. This process is performed repeatedly until no collision is found. The Suthakorn method is applied to solve the inverse kinematics problem. Two new ideas are proposed to reduce the errors of this method: the two-by-two searching method, and iterations. To verify the proposed method, some problems are solved numerically for 2D and 3D manipulators, each in two different obstacle... 

    Kinematic control of a new hyper-redundant manipulator with lockable joints

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1742-1752 ; 10263098 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Kinematic control of a special hyper-redundant manipulator with lockable joints is studied. In this manipulator, the extra cables are replaced by a locking system to reduce the weight of the structure and the number of actuators. This manipulator has discrete and continuous variables due to its locking system. Therefore, a hybrid approach has been adopted in control. At first the forward kinematics and velocity kinematics of this manipulator are derived, and then a novel closed-loop control algorithm is presented. This algorithm consists of decision making, an inner loop controller, and kinematic calculation blocks. The decision making block is the logical part of the control scheme in which... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; February , 2015 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; Volume 35, Issue 1 , 2017 , Pages 101-118 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic...