Loading...
Search for: impact-behavior
0.009 seconds

    Role of interfacial fracture energy and laminate architecture on impact performance of aluminum laminates

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 39, Issue 11 , 2008 , Pages 1685-1693 ; 1359835X (ISSN) Marouf, B.T ; Bagheri, R ; Mahmudi, R ; Sharif University of Technology
    2008
    Abstract
    The impact behavior of aluminum/epoxy laminates was studied by changing the number of layers and the interface strength. It should be noted that although the overall thickness did not changed, the individual layers decreased in thickness when the number of layers increased. The results indicate that the impact resistance of the laminate increases with the number of layers, while the interface strength has a less pronounced influence (50%) on the impact resistance of the laminate. It is also deducted that if the ratio of layer thickness to plastic zone size is smaller than or equal to 1, the impact behavior of the laminates is sensitive to the interface strength. © 2008 Elsevier Ltd. All... 

    Investigation of Dynamic Behavior of Concrete Slabs Reinforced with GFRP Bars and Prestressed Concrete Slabs under Impact Loading

    , Ph.D. Dissertation Sharif University of Technology Sadraie, Hamid (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Prestressed and reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although, use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. In addition, studies on steel reinforced concrete slabs have been found in literature, but investigation of prestressed slabs and GFRP reinforced concrete slabs under impact load is limited. This study investigated the effect of rebar’s material, amount and arrangement of reinforcements, concrete strength and slab... 

    Dynamic Performance Enhancement of RC Slabs by Steel Fibers vs. Externally Bonded GFRP Sheets under Impact Loading

    , Ph.D. Dissertation Sharif University of Technology Soltani, Hesam (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Recently, to improve the dynamic behavior of Reinforced Concrete (RC) slabs under impact load, the methods of externally bonding Glass Fiber Reinforced Polymer (GFRP) sheets to slab and internally reinforcing concrete by steel fibers have been proposed. Nevertheless, it is required to investigate the comparison between these two methods on response of RC slabs under impact loads. In this study, the influence of volume fraction of steel fibers, the number of GFRP sheet layers (one or two) and the arrangement of GFRP sheets (covering the whole or parts of surface), are examined. Performance of fourteen mm concrete slabs including one plain slab, one steel RC slab, three steel RC slabs... 

    Predicting Charpy impact energy of Al6061/SiCp laminated nanocomposites in crack divider and crack arrester forms

    , Article Ceramics International ; Volume 39, Issue 6 , 2013 , Pages 6099-6106 ; 02728842 (ISSN) Pouraliakbar, H ; Nazari, A ; Fataei, P ; Livary, A. K ; Jandaghi, M ; Sharif University of Technology
    2013
    Abstract
    Charpy impact energy of the produced Al6061-SiCp laminated nanocomposites by mechanical alloying was modeled by adaptive neuro-fuzzy interfacial systems (ANFIS) in both crack divider and crack arrester configurations. The model was constructed by training, validating and testing of 171 gathered input-target data. The thickness of layers, the number of layers, the adhesive type, the crack tip configuration and the content of SiC nanoparticles were five independent input parameters utilized for modeling. The output parameter was Charpy impact energy of the nanocomposites. The performance of the proposed models was evaluated by absolute fraction of variance, the absolute percentage error and... 

    A numerical tool for design of dynamic compaction treatment in dry and moist sands

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 33, Issue 4 , 2009 , Pages 313-326 ; 10286284 (ISSN) Ghassemi, A ; Pak, A ; Shahir, H ; Sharif University of Technology
    2009
    Abstract
    Dynamic compaction (DC) is a popular soil improvement method that is extensively used worldwide. DC treatment design is usually carried out based on past experiences and empirical relations. To establish a rational design approach, all important factors affecting the DC process should be taken into account. In this paper, a finite element code is developed for modeling the impact behavior of dry and moist granular soils. The code is verified with the results of some centrifuge tests. Several analyses were conducted in order to study the effects of energy/momentum per drop, tamper base radius, and number of drops on compaction degree, compacted depth, and extension of the improved zone in the... 

    Dynamic performance enhancement of RC slabs by steel fibers vs. externally bonded GFRP sheets under impact loading

    , Article Engineering Structures ; Volume 213 , 2020 Soltani, H ; Khaloo, A ; Sadraie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Recently, to improve the dynamic behavior of Reinforced Concrete (RC) slabs under impact load, the methods of externally bonding Glass Fiber Reinforced Polymer (GFRP) sheets to slab and internally reinforcing concrete by steel fibers have been proposed. Nevertheless, it is required to investigate the comparison between these two methods on response of RC slabs under impact loads. In this study, the influence of volume fraction of steel fibers, the number of GFRP sheet layers (one or two) and the arrangement of GFRP sheets (covering the whole or parts of surface), are examined. Performance of fourteen 1000 × 1000 × 75 mm concrete slabs including one plain slab, one steel RC slab, three steel... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,...