Loading...
Search for: in-situ-emulsion-polymerization
0.005 seconds

    Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization

    , Article Synthetic Metals ; Vol. 196 , 2014 , pp. 199-205 Baniasadi, H ; Ramazani, S. A ; Mashayekhan, S ; Ghaderinezhad, F ; Sharif University of Technology
    Abstract
    This work, which is a part of our ongoing studies on developing conductive scaffolds for nerve tissue engineering, reports synthesis of highly conductive binary-doped polyaniline nanoparticles and polyaniline/graphene nanocomposites. The samples were synthesized through chemical oxidation of aniline via in situ emulsion polymerization method in presence of hydrochloric acid and sodium dodecyl sulfate. Graphene nanosheets were also prepared via modified Hummer's method followed by chemical reduction using hydrazine monohydrate. Electrical conductivity measurements using a standard four-point probe technique with FTIR and UV-vis studies revealed that conductive binary-doped emeraldine salt... 

    In situ emulsion polymerization and characterization of PVAc nanocomposites including colloidal silica nanoparticles for wood specimens bonding

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 15 , 2020 Azamian Jazi, M ; Ramezani Saadat Abadi, A ; Haddadi, S. A ; Ghaderi, S ; Azamian, F ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc... 

    3D ternary Ni: XCo2- xP/C nanoflower/nanourchin arrays grown on HCNs: A highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction

    , Article Nanoscale ; Volume 12, Issue 30 , 2020 , Pages 16123-16135 Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Over the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts. Nevertheless, finding a straightforward and effective route to prepare efficient catalysts with unique structural features and optimal supports still is a big challenge. Among the various candidates, metal-organic framework (MOF)-derived materials show great advantages as new kinds of active non-precious catalysts. On the other hand, the controllable integration of MOFs and carbon-based nanomaterials leads to further...