Loading...
Search for:
in-vitro
0.045 seconds
Total 125 records
Effect of cyclic loading on the temporomandibular joint
, Article Lecture Notes in Engineering and Computer Science ; Volume 1 , 2014 , Pages 655-658 ; ISSN: 20780958 ; ISBN: 9789881925275 ; Wang, B ; Chizari, M ; Sharif University of Technology
Abstract
This research is aiming to investigate the mechanical behaviour of the temporomandibular joint (TMJ), in response to kinematics/cyclical loading caused through actions of speech and mastication. A set of in-vitro experimental tests has been performed in three different groups on a fresh sheep jaw bone to examine the hypothesis of the study. No failure was monitored during the cyclical test. The study was concluded that the amount of loading is effective on the displacement of the TMJ
Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy
, Article Chemical Papers ; 2020 ; Dabbagh, A ; Abnisa, F ; Karimian, H ; Abu Kasim, N. H ; Wan Daud, W. M. A ; Sharif University of Technology
Springer
2020
Abstract
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as promising magnetic nanoheating agents for diagnostic as well as therapeutic applications due to their biocompatibility and tunability of magnetic properties. These nanoheating agents are commonly synthesized by coprecipitation of two iron precursors, though applying less amount of these chemicals may minimize the toxicity risks for biomedical purposes. The aim of this study is to address this issue by considering the high oxidation vulnerability of ferrous ions to ferric ions to synthesize SPIONs via a single-iron precursor under four varied oxidative conditions. The obtained results implied that the properties...
Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy
, Article Chemical Papers ; Volume 75, Issue 2 , 2021 , Pages 669-679 ; 03666352 (ISSN) ; Dabbagh, A ; Abnisa, F ; Karimian, H ; Abu Kasim, N. H ; Wan Daud, W. M. A ; Sharif University of Technology
Springer Science and Business Media Deutschland GmbH
2021
Abstract
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as promising magnetic nanoheating agents for diagnostic as well as therapeutic applications due to their biocompatibility and tunability of magnetic properties. These nanoheating agents are commonly synthesized by coprecipitation of two iron precursors, though applying less amount of these chemicals may minimize the toxicity risks for biomedical purposes. The aim of this study is to address this issue by considering the high oxidation vulnerability of ferrous ions to ferric ions to synthesize SPIONs via a single-iron precursor under four varied oxidative conditions. The obtained results implied that the properties...
In vitro characterization of carbon-nanotube-reinforced hydroxyapatite composite coating on 316L stainless steel
, Article Journal of Ceramic Science and Technology ; Volume 4, Issue 3 , August , 2013 , Pages 163-168 ; 21909385 (ISSN) ; Nemati, A ; Sadeghian, Z ; Sharif University of Technology
2013
Abstract
This investigation focused on a comparison between hydroxyapatite (HA) and carbon-nanotube-reinforced hydroxyapatite composite (CNTs/HA) coatings. The HA and CNTs/HA composite (with 5wt% CNTs) coatings were prepared with the sol-gel method on 316L stainless steel. Phase evaluation by means of XRD and Raman spectroscopy was performed on the HA and CNTs/HA composite coatings. The coatings were immersed in simulated body fluid (SBF) in order to evaluate the biological properties of the coatings. During the first week of immersion, the increase in the amount of Ca2+ precipitation in the SBF when CNTs/HA was used was lower than for the HA coatings. This behavior can be related to the difference...
Design and Manufacture of Nanostructured Hydroxyapatite coated Foamy core@compact Shell Ti-6Al-4V Nanocomposite
, M.Sc. Thesis Sharif University of Technology ; Sadrnezhad, Khatiboleslam (Supervisor)
Abstract
The main purpose of this research is design and manufacture of nanostructured hydroxyapatite-coated foamy core@compact shell Ti-6Al-4V bone-like composites for utilization as substitutive implant for cortical bone having porous core. The production procedure consist of two steps; (a) fabrication of foamy core@compact shell Ti-6Al-4V alloy using powder metallurgy-space holder technique, (b) precipitation of hydroxyapatite on the Ti-6Al-4V alloy specimens via pulse electrodeposition process. The bone-like structures were designed to reduce the stress shielding which ensures long-term stabilization of implants. It is while that, the hydroxyapatite coating improve the biological response of...
Characterization of Nanohydroxyapatite-Carbon Nanotube on Stainless Steel 316L Produced by Sol-Gel Method
, M.Sc. Thesis Sharif University of Technology ; Nemati, Ali (Supervisor) ; Sadeghian, Zahra (Supervisor)
Abstract
In this investigation, hydroxyapatite-carbon nanotube nano composite coatings were applied on the 316L stainless steel implants. After polishing with 1200 sand paper, stainless steel implants were coated via dip coating method. The specimens were heat treated at 350˚C after being coated with HAP and HAP-CNTs composite. In vitro test was done in simulated body fluid (SBF) in 1 to 4 weeks periods. XRD evaluation of powder obtained from sol-gel process, showed the presence of HAP and CNTs in the powders. Comparison of XRD results of HAP and HAP-CNTs powders showed the better crystalinity of composite hydroxyapatite. After in vitro tests, specimens were studied with atomic force microscope (AFM)...
Developing a Biomechanical Model of Lumbar Spine in Order to Evaluating the Behavior of Spine under Physiological and in Vitro Loading Conditions
, M.Sc. Thesis Sharif University of Technology ; Firozbakhsh, Keikhosrow (Supervisor) ; Parnianpour, Mohammad (Co-Advisor)
Abstract
In present study we are going to introduce a biomechanical model of lumbar spine with using finite element method and use it for evaluating the behavior of spine under different loading conditions.Spine as the main part of muskloskeletal system of human body is tolerating various forces during daily activities.So it's important to know about different approaches for studing the loading conditions wich is using for evaluating the behavior of lumbar implants. In other words in order to obtain correct outputs we need to simulate the real condition in the experiments. We can use biomechanical models in order to comparison the different approaches
Enhanced Waddington landscape model with cell-cell communication can explain molecular mechanisms of self-organization
, Article Bioinformatics ; Volume 35, Issue 20 , 2019 , Pages 4081-4088 ; 13674803 (ISSN) ; Moradi, P ; Sharifi Zarchi, A ; Hosein Khalaj, B ; Berger, B ; Sharif University of Technology
Oxford University Press
2019
Abstract
The molecular mechanisms of self-organization that orchestrate embryonic cells to create astonishing patterns have been among major questions of developmental biology. It is recently shown that embryonic stem cells (ESCs), when cultured in particular micropatterns, can self-organize and mimic the early steps of pre-implantation embryogenesis. A systems-biology model to address this observation from a dynamical systems perspective is essential and can enhance understanding of the phenomenon. Results: Here, we propose a multicellular mathematical model for pattern formation during in vitro gastrulation of human ESCs. This model enhances the basic principles of Waddington epigenetic landscape...
An in-vitro measurement of temperature changes in phacoemulsification system during different modes
, Article 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008, Shanghai, 16 May 2008 through 18 May 2008 ; 2008 , Pages 1569-1574 ; 9781424417483 (ISBN) ; Fattahi, H ; Amjadi, A ; Sharif University of Technology
IEEE Computer Society
2008
Abstract
Ultrasound waves have been used in these days for most surgeries. They are applied to remove body tissues through surgery, for example in removing eye lens in cataract surgery. In a nutshell, a 3mm incision near cornea has been created and then after, a folded lens will be implanted and the patient can be released soon after the operation. The process is done by a vibrating metal tip in order to emulsify the lenses and the small particles will aspirate the debris through the hollow center of the tip. The problem of this procedure in some cases is thermal damage. This research addresses the aforementioned problem through an important parameter, different operating modes of the system. The...
Polymer-functionalized carbon nanotubes in cancer therapy: A review
, Article Iranian Polymer Journal (English Edition) ; Vol. 23, issue. 5 , May , 2014 , p. 387-403 ; Hosseini, S. H ; Adeli, M ; Pourjavadi, A ; Sharif University of Technology
Abstract
The increasing importance of nanotechnology in the field of biomedical applications has encouraged the development of new nanomaterials endowed with multiple functions. Novel nanoscale drug delivery systems with diagnostic, imaging and therapeutic properties hold many promises for the treatment of different types of diseases, including cancer, infection and neurodegenerative syndromes. Carbon nanotubes (CNTs) are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, CNTs have been extensively explored as drug delivery carriers for the intracellular transport of...
Effect of formulation factors on the bioactivity of glucose oxidase encapsulated chitosan-alginate microspheres: In vitro investigation and mathematical model prediction
, Article Chemical Engineering Science ; Volume 125 , March , 2015 , Pages 4-12 ; 00092509 (ISSN) ; Cheng, J ; Wu, X. Y ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Higher reactive oxygen species (ROS) levels in cancer cells than normal cells have long been recognized, which makes cancer cells more susceptible to excess ROS. Thus oxidation (also called pro-oxidant) therapy has been explored as new cancer therapy regimens. To produce additional ROS, e.g. H2O2 in situ within tumor, we encapsulated glucose oxidase in chitosan-coated alginate-calcium microspheres (GOX-MS) for locoregional treatment and demonstrated its efficacy against cancer cells in vitro and in vivo. Owing to the complex biological functions of ROS, the production rate and amount of H2O2 are critical to achieve therapeutic benefits without causing normal tissue toxicity. This work was...
Organ-tumor-on-a-chip for chemosensitivity assay: A critical review
, Article Micromachines ; Volume 7, Issue 8 , 2016 ; 2072666X (ISSN) ; Nikmaneshi, M. R ; Moghadas, H ; Kiyoumarsi Oskouei, A ; Rismanian, M ; Barisam, M ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
MDPI AG
2016
Abstract
With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system) make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D) nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate...
Highly-ordered TiO2 nanotubes decorated with Ag2O nanoparticles for improved biofunctionality of Ti6Al4V
, Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 1008-1017 ; 02578972 (ISSN) ; Dabbagh, A ; Abdul Razak, B ; Mahmoodian, R ; Nasiri Tabrizi, B ; Madaah Hosseini, H. R ; Saber Samandari, S ; Abu Kasim, N. H ; Abdullah, H ; Sukiman, N. L ; Sharif University of Technology
Elsevier B.V
2018
Abstract
The nanotubular arrays of titanium dioxide (TiO2 NTs) have recently received considerable interest for fabrication of dental and orthopedic implants. However, their antibacterial activity requires substantial improvement for the potential infections minimization, without compromise of their biocompatibility. In this work, TiO2 NTs were developed on Ti6Al4V substrates via anodization at a constant potential of 60 V for 60 min, followed by heat treatment at 500 °C for 90 min. Physical vapor deposition (PVD) was further employed to decorate silver oxide nanoparticles (Ag2O NPs) on the nanotubular edges. The results indicated that the highly-ordered TiO2 NTs with decorated Ag2O NPs could promote...
Biomechanical simulation of eye-airbag impacts during vehicle accidents
, Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 232, Issue 7 , 2018 , Pages 699-707 ; 09544119 (ISSN) ; Zohoor, H ; Naserkhaki, S ; Sharif University of Technology
SAGE Publications Ltd
2018
Abstract
Airbags are safety devices in vehicles effectively suppressing passengers’ injuries during accidents. Although there are still many cases of eye injuries reported due to eye-airbag impacts in recent years. Biomechanical approaches are now feasible and can considerably help experts to investigate the issue without ethical concerns. The eye-airbag impact–induced stresses/strains in various components of the eye were found to investigate the risk of injury in different conditions (impact velocity and airbag pressure). Three-dimensional geometry of the eyeball, fat and bony socket as well as the airbag were developed and meshed to develop a finite element model. Nonlinear material properties of...
Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite
, Article Journal of Medical and Biological Engineering ; Volume 38, Issue 1 , February , 2018 , Pages 99-105 ; 16090985 (ISSN) ; Madaah Hosseini, H. R ; Taromi, N ; Arasteh, S ; Kazemnejad, S ; Samadi Kuchaksaraei, A ; Sharif University of Technology
Springer Berlin Heidelberg
2018
Abstract
Biodegradable polymer/bioceramic nanocomposites are osteoconductive and can accelerate healing of bone tissue. In this research, silk fibroin (SF)/titanium dioxide (TiO2) nanocomposites were synthesized using different concentrations of TiO2 nanoparticles (0, 5, 10, 15 and 20 wt%). The SF/TiO2 nanocomposites were studied in terms of bioactivity and biocompatibility. The in vitro assessment of osteoblasts compatibility indicated that SF inclusion rendered nanocomposite biocompatible whereas presence of TiO2 nanoparticles allowed the cells to adhere and grow on nanocomposite surface and enhanced the bioactivity of the composite. © 2017, Taiwanese Society of Biomedical Engineering
In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays
, Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
Springer International Publishing
2019
Abstract
In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C....
Experimental Investigation on Growth and Control of Animal Cells Attached on Scaffold
, M.Sc. Thesis Sharif University of Technology ; Vossoughi, Manoochehr (Supervisor) ; Alamzadeh, Iran (Co-Advisor)
Abstract
Major bone defects resulted from diseases or hurts that can not heal naturally, requaire bone transplantation. golden standard for transplantation is autologus one but it has some disad-vantages such as economic burden, the lack of graft source, surgery on patient, and so on. so exploring altrnative ways led to exploit stem cells.traditionally bone marrow mesenchymal stem cells (MSCs) used for stem cell-bsaed bone regeneration. bone marrow aspiration to aquaire stem cells is painfull and give a population of cells such as hematopoetic cells that requaire to seperate and can not be handled in first passages. MSCs can be substituted by multipotent adipose tissue-derived stem cells (ADSCs) in...
Synthesis of Graphene Structures by Chemical Vapor Deposition Method and Evaluation of their Electrical and Biological Properties
, M.Sc. Thesis Sharif University of Technology ; Simchi, Abdolreza (Supervisor)
Abstract
Graphene is a newly developed nanomaterial that has resived considerable attention in recent years. Graphene – based structures having remarkable properties, e.g. high specific surface area, ultrahigh electrical conductivity and good biocompability, are ideal choices for nanomedical applications such as biosensors and cell culture scaffolds. So, in this project 2D graphene and 3D graphene foam structures were synthesized by chemical vapor deposition (CVD) method and their electrical and biological properties were evaluated. First step of this project was to design and make a CVD system suitable for the synthesis of high quality graphene structures, i.e. single layer graphene and 3D graphene...
Design of a Novel Cable Driven Robotic System for Simulation of in vivo Loading of Cadaveric Lumbar Spine with Robustness-adaptive Controller for in vitro Spine Testing
, M.Sc. Thesis Sharif University of Technology ; Parnianpour, Mohammad (Supervisor) ; Arjmand, Navid (Supervisor)
Abstract
In this project we plan to propose a mechanism for controlling the profile of vertebra displacment and intera-discal pressure in in-vitro tests. Spineis the one of the most important members of the human musculoskeletal system. Health and stability of the spine help the people to moves on two legs. So any problems with this organ, causing movement problems and pain. For the treatment of spinal diseases, several methods such as surgery, insertion of implants and stabilizing were used. To ensure the accuracy of these methods, laboratory examination is essential. One of the ways to test these interventions, the implementation of in vitro tests on samples obtained from the bodies of the spine....