Loading...
Search for: incompressible-navier-stokes-equations
0.004 seconds

    Existence and Uniqueness of Solutions to a Fluidstructure Model Coupling the Navier-Stokes Equations and the Lame System

    , M.Sc. Thesis Sharif University of Technology Golmirzaee, Narges (Author) ; Hesaraki, Mahmoud (Supervisor)
    Abstract
    In this thesis, we consider a system containing fluid equations, structure equations, and equations of these two materials’ common interface in three dimensions and on the regular domains. We suppose that the solid which is described by the Lamé system of linear elasticity, moves inside an incompressible viscous fluid in three dimensions, and the fluid obeys the incompressible Navier-Stokes equations in a time-dependent domain. At the fluid–solid interface, natural conditions are imposed, continuity of the velocities and of the Cauchy stress forces. The fluid and the solid are coupled through these conditions. By this interaction, the fluid deforms the boundary of the solid which in turn... 

    A truly incompressible smoothed particle hydrodynamics based on artificial compressibility method

    , Article Computer Physics Communications ; Volume 210s , 2017 , Pages 10-28 ; 00104655 (ISSN) Rouzbahani, F ; Hejranfar, K ; Sharif University of Technology
    Abstract
    In the present study, a truly incompressible smoothed particle hydrodynamics based on the artificial compressibility method for simulating steady and unsteady incompressible flows is proposed and assessed. The incompressible Navier–Stokes equations in the primitive variables formulation using the artificial compressibility method proposed by Chorin in the Eulerian reference frame are written in a Lagrangian reference frame to provide an appropriate incompressible SPH algorithm. The proposed SPH formulation implemented here is based on an implicit dual-time stepping scheme to be capable of time-accurate analysis of unsteady flows. The advantage of the Artificial Compressibility-based... 

    Simulation of incompressible multiphase flows using the artificial compressibility method

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Mortezazadeh, M ; Hejranfar, K ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    The Eulerian methods are susceptible to generate the nonphysical spurious currents in the multiphase flow simulations near the interfaces. This paper presents a new Eulerian method to accurately simulate the velocity fields, especially near the multiphase flow interfaces and prevents the numerical results from generating the nonphysical currents. A Eulerian central difference finite-volume scheme equipped with the suitable numerical dissipation terms is used to simulate incompressible multiphase flows. The interface is captured by Flux Corrected Transport-Volume of Fluid method (FCT-VOF). Increasing the accuracy near the sharp gradients, such as interface, the conservative form of... 

    Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray's in flapping motion

    , Article Applied Ocean Research ; Volume 109 , 2021 ; 01411187 (ISSN) Safari, H ; Abbaspour, M ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Manta ray swimming or bio-inspiration propulsion system, as a special type of marine propulsion system, is used for submersible vehicles that require high-speed maneuverability and stability, such as glider and AUV. In a manta ray swimming, the thrust force is generated by a couple of undulation and oscillation of wing, so that the direction of undulation wave and oscillation is upright and perpendicular to the direction of thrust force, respectively. It is possible to combine these two movement modes (flapping motion) on the three-dimensional model without considering the effects of wing twisting and flexibility to simplify and better understand the physical behaviors or special study of... 

    Implementing a high-order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method

    , Article International Journal for Numerical Methods in Fluids ; Volume 66, Issue 8 , July , 2011 , Pages 939-962 ; 02712091 (ISSN) Hejranfar, K ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    This paper uses a fourth-order compact finite-difference scheme for solving steady incompressible flows. The high-order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two-dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth-order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block-tridiagonal...