Loading...
Search for: industrial-emission
0.011 seconds

    Removal of airborne hexavalent chromium mist using chitosan gel beads as a new control approach

    , Article International Journal of Environmental Science and Technology ; Volume 3, Issue 3 , 2006 , Pages 305-313 ; 17351472 (ISSN) Tirgar, A ; Golbabaei, F ; Hamedi, J ; Nourijelyani, K ; Shahtaheri, S. J ; Moosavi, S. R ; Sharif University of Technology
    CEERS  2006
    Abstract
    Airborne hexavalent chromium is a known human respiratory carcinogen and allergen. Many workers are exposed to hexavalent chromium in various processes which chromium electroplating plants are the most common. In this study, the feasibility of a new control approach to remove this pollutant using chitosan beads as a biosorbent was investigated. Hexavalent chromium sorption was studied relative to pH, pollution concentration, sorbent concentration, temperature, and air velocity using one factor at a time approach and Taguchi experimental design. Polluted air with different chromium mist concentrations (10-5000 μg/m3) was contacted to chitosan beads (3.3-20 g/L), floating in distilled water... 

    Post-2012 CDM multi-criteria analysis of industries in six Asian countries: Iranian case study

    , Article Climate Policy ; Volume 13, Issue 2 , 2013 , Pages 210-239 ; 14693062 (ISSN) Mohammadi, A ; Abbaspour, M ; Soltanieh, M ; Atabi, F ; Rahmatian, M ; Sharif University of Technology
    2013
    Abstract
    The prospects of the Clean Development Mechanism (CDM) and for carbon income, up to and beyond 2012, in the industrial sectors of Iran and five other Asian countries are investigated. The attractiveness and suitability of each host country, the status of their industrial sectors (based on four post-2012 scenarios), and the post-2012 potential of the CDM (or similar carbon projects) in these sectors are all examined. A multi-criteria analysis of Iran, Saudi Arabia, the UAE, Qatar, China, and India, based on seven sets of criteria (institutional, regulatory, economic, political, social, CDM experience, and energy production/consumption), is conducted, and the post-2012 potential carbon incomes... 

    On the environmental effectiveness analysis of energy policies: A case study of air pollution in the megacity of Tehran

    , Article Science of the Total Environment ; Volume 705 , 2020 Taksibi, F ; Khajehpour, H ; Saboohi, Y ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The present study compared different approaches to assessing the environmental cost-effectiveness of energy policy scenarios. As a case study, the megacity of Tehran in Iran was studied. A key policy challenge in this city is to curb high concentrations of PM2.5 and mitigate the associated adverse impacts. The results demonstrated that in the business as usual case, the spatially averaged primary and secondary PM2.5 concentration in Tehran will increase by 30% in the 2010–2030 period. Adopting certain planned policy scenarios and the corresponding pollutant concentration reductions in Tehran shows that although most of the emission comes from industrial activities around the city, the... 

    An overview of sustainable energy development by using cogeneration technology and opportunity for improving process

    , Article International Journal of Energy Research ; Volume 45, Issue 8 , 2021 , Pages 11423-11439 ; 0363907X (ISSN) Salehi, A. A ; Ghannadi Maragheh, M ; Torab Mostaedi, M ; Torkaman, R ; Asadollahzadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Nowadays, energy supply is one of the most prominent demands of countries in the world. The enhancement in energy efficiency, flexibility for applications in various industrial processes, and the reduction in the environmental impacts of pollutant emissions can be accomplished by using sustainable energy sources. Alternative procedures for heat and electricity production have been developed in the commercial and industrial sectors and focusing on the cogeneration systems, and the contribution of nuclear energy has been increased for improving processes. Nuclear reactors play an essential role in nonelectric applications, and combined heat and energy at different operating temperatures can be... 

    Integrated analysis of energy-pollution-health nexus for sustainable energy planning

    , Article Journal of Cleaner Production ; Volume 356 , 2022 ; 09596526 (ISSN) Rezazadeh, A. A ; Alizadeh, S ; Avami, A ; Kianbakhsh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In recent years, the emission of various pollutants has caused many problems for human life and the ecosystem. The prioritization between different air pollution control scenarios is a challenge between scientists and policy-makers. This study develops an integrated method for sustainable energy planning considering the energy-pollution-health nexus. The paper investigates three main pollutants (i.e., PM2.5, SO2, and NOx) of different emission sources (i.e., industrial, residential, and intra-city and suburban transportations) in twelve scenarios. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) is applied to model the air pollution dispersion,... 

    A novel method to determine the best size of CHP for an energy hub system

    , Article 2011 2nd International Conference on Electric Power and Energy Conversion Systems, EPECS 2011 ; 2011 ; 9781457708060 (ISBN) Sheikhi, A ; Ranjbar, A. M ; Safe, F ; IEEE; Power and Energy Society (IEEE PES); Abu Dhabi Water and Electricity Authority ; Sharif University of Technology
    Abstract
    Today, the interest on distributed generation has been increasing, especially due to technical development on generation systems that meet environmental and energy policy concerns. One of the most important distributed energy technologies is Combined Heat and Power (CHP). CHP is small and self-contained electric generation plan that can provide power for household applications, commercial or industrial facilities and hence its applications are overtly increasing. It can reduce power loss and enhance service reliability in distribution systems. One of the influential factors for the users is the purchasing cost of CHP which is largely dependent on its type, capacity and efficiency. Therefore... 

    CHP optimized selection methodology for a multi-carrier energy system

    , Article 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011 ; 2011 ; 9781424484195 (ISBN) Sheikhi, A ; Mozafari, B ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Today, the interest on distributed generation has been increasing, especially due to technical development on generation systems that meet environmental and energy policy concerns. One of the most important distributed energy technologies is Combined Heat and Power (CHP). CHP is small and self-contained electric generation plan that can provide power for household applications, commercial or industrial facilities and hence its applications are overtly increasing. It can reduce power loss and enhance service reliability in distribution systems. One of the influential factors for the users is the purchasing cost of CHP which is largely dependent on its type, capacity and efficiency. Therefore... 

    CHP optimized selection methodology for an energy hub system

    , Article 2011 10th International Conference on Environment and Electrical Engineering, EEEIC.EU 2011 - Conference Proceedings, 8 May 2011 through 11 May 2011 ; May , 2011 , Page(s): 1 - 5 ; 9781424487820 (ISBN) Sheikhi, A ; Ranjbar, A. M ; Safe, F ; Mahmoodi, M ; Sharif University of Technology
    2011
    Abstract
    Today, the interest on distributed generation has been increasing, especially due to technical development on generation systems that meet environmental and energy policy concerns. One of the most important distributed energy technologies is Combined Heat and Power (CHP). CHP is small and self-contained electric generation plan that can provide power for household applications, commercial or industrial facilities and hence its applications are overtly increasing. It can reduce power loss and enhance service reliability in distribution systems. One of the influential factors for the users is the purchasing cost of CHP which is largely dependent on its type, capacity and efficiency. Therefore... 

    Techno-economic comparative study on hydrogen and electricity cogeneration systems with CO2 capture

    , Article ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 26 June 2016 through 30 June 2016 ; Volume 1 , 2016 ; 9780791850220 (ISBN) Zohrabian, A ; Soltanieh, M ; Mansouri Majoumerd, M ; Arild, Ø ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In order to achieve the international climate goals and to keep the global temperature increase below 2 °C, carbon capture and storage in large point sources of CO2 emissions has received considerable attention. In recent years, mitigation of CO2 emissions from the power sector has been studied extensively whereas other industrial point source emitters such as hydrogen industry have also great potential for CO2 abatement. This study aims to draw an updated comparison between different hydrogen and power cogeneration systems using natural gas and coal as feedstock. The goal is to show the relative advantage of cogeneration systems with respect to CO2 emission reduction costs. Accordingly, the... 

    Energy transfer in a liquid filled elemental passage of a porous medium for permeability enhancement due to pulsations of a vapor bubble

    , Article Mechanika ; Volume 22, Issue 1 , 2016 , Pages 25-30 ; 13921207 (ISSN) Rambarzin, F ; Shervani Tabar, M. T ; Taeibi Rahni, M ; Tabatabaei Nejad, S. A ; Sharif University of Technology
    Kauno Technologijos Universitetas  2016
    Abstract
    In this paper, a novel method which has been proposed during the last decade for increasing of the permeability of porous media of petroleum reservoirs by transferring of energy via ultrasound waves is investigated numerically. Increasing of permeability of porous media of petroleum reservoirs results in enhancing of oil recovery. This technique is based on the idea of transferring of energy to the liquid filled porous media via the ultrasound waves and consequently producing of pulsating vapor bubbles. The generated vapor bubbles transfer the energy of ultrasound waves in the liquid filled passages of a porous medium through velocity and pressure fields in the liquid domain and in turn... 

    An overview of sustainable energy development by using cogeneration technology and opportunity for improving process

    , Article International Journal of Energy Research ; 2020 Salehi, A. A ; Ghannadi Maragheh, M ; Torab Mostaedi, M ; Torkaman, R ; Asadollahzadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    Nowadays, energy supply is one of the most prominent demands of countries in the world. The enhancement in energy efficiency, flexibility for applications in various industrial processes, and the reduction in the environmental impacts of pollutant emissions can be accomplished by using sustainable energy sources. Alternative procedures for heat and electricity production have been developed in the commercial and industrial sectors and focusing on the cogeneration systems, and the contribution of nuclear energy has been increased for improving processes. Nuclear reactors play an essential role in nonelectric applications, and combined heat and energy at different operating temperatures can be... 

    Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism

    , Article Chemosphere ; Volume 72, Issue 6 , 2008 , Pages 905-909 ; 00456535 (ISSN) Zeinali, M ; Vossoughi, M ; Ardestani, S. K ; Sharif University of Technology
    2008
    Abstract
    The thermophilic bacterium Nocardia otitidiscaviarum strain TSH1, originally isolated in our laboratory from a petroindustrial wastewater contaminated soil in Iran, grows at 50 °C on a broad range of hydrocarbons. Transformation of naphthalene by strain TSH1 which is able to use this two ring-polycyclic aromatic hydrocarbon (PAH) as a sole source of carbon and energy was investigated. The metabolic pathway was elucidated by identifying metabolites, biotransformation studies and monitoring enzyme activities in cell-free extracts. The identification of metabolites suggests that strain TSH1 initiates its attack on naphthalene by dioxygenation at its C-1 and C-2 positions to give... 

    Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    , Article Atmospheric Environment ; Volume 153 , 2017 , Pages 70-82 ; 13522310 (ISSN) Arhami, M ; Hosseini, V ; Zare Shahne, M ; Bigdeli, M ; Lai, A ; Schauer, J. J ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5along with their seasonal trends and associated sources. 24-hour PM2.5samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of... 

    Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers

    , Article Science of the Total Environment ; Volume 705 , 2020 Esmaeilirad, S ; Lai, A ; Abbaszade, G ; Schnelle Kreis, J ; Zimmermann, R ; Uzu, G ; Daellenbach, K ; Canonaco, F ; Hassankhany, H ; Arhami, M ; Baltensperger, U ; Prévôt, A. S. H ; Schauer, J. J ; Jaffrezo, J. L ; Hosseini, V ; El Haddad, I ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    With over 8 million inhabitants and 4 million motor vehicles on the streets, Tehran is one of the most crowded and polluted cities in the Middle East. Frequent exceedances of national daily PM2.5 limit have been reported in this city during the last decade, yet, the chemical composition and sources of fine particles are poorly determined. In the present study, 24-hour PM2.5 samples were collected at two urban sites during two separate campaigns, a one-year period from 2014 to 2015 and another three-month period at the beginning of 2017. Concentrations of organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals and specific organic molecular markers were measured by chemical...