Loading...
Search for: industrial-systems
0.009 seconds

    An effective collaboration model between industry and university based on the theory of self organization: A system dynamics model

    , Article Journal of Science and Technology Policy Management ; Volume 6, Issue 1 , 2015 , Pages 2-24 ; 20534620 (ISSN) Fateh Rad, M ; Seyedesfahani, M. M ; Jalilvand, M. R ; Sharif University of Technology
    Emerald Group Publishing Ltd  2015
    Abstract
    Purpose - This study aims to investigate the relationship between university and industry as two major infrastructures of national innovation system in all leading scientific and industrial settings. Design/methodology/approach - Large complex organizations with high technology that follow non-linear dynamic rules need to define concepts and adopt new approaches to achieve organizational efficiency and effectiveness. Among various models, a dynamic model of innovation was developed based on a joint investment between industry and university. Hence, the concepts of systems thinking and system dynamics were used.Findings- The results reveal three levels of industry and university communication... 

    A hybrid systems approach to determine effective factors on the growth of marine industries in developing countries

    , Article International Journal of Business and Systems Research ; Volume 15, Issue 1 , 2021 , Pages 124-142 ; 1751200X (ISSN) Eshaghpour, S ; Hosseini, S. H ; Aghaei, S. A ; Seif, M. S ; Sharif University of Technology
    Inderscience Publishers  2021
    Abstract
    Marine industries have always been provided power and development for countries both militarily and economically. Due to the lack of essential economic, industrial, and technological infrastructure in developing countries, the development of marine industries has been facing serious obstacles. As a developing country, Iran has been tackling similar barriers. This paper aims at developing a conceptual model, to examine this complex problem, using a systems approach by which subsystems and casual loop diagrams have been created. Afterward, DEMATEL technique has been used, revealing the most effective variables. The research can remarkably help practitioners in appropriate recognition and... 

    Hydrogen distribution in refinery with non-linear programming

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 18, Issue 2 , 2005 , Pages 165-176 ; 1728-144X (ISSN) Shahraki, F ; Kashi, E ; Rashtchian, D ; Sharif University of Technology
    Materials and Energy Research Center  2005
    Abstract
    Growth of the world population, increasing demand for fossil fuel consumption and consequently increasing threat of global warming, has extended the need for production and use of clean fuels and normal hydrogen is an important utility in the production of clean fuels. In this paper, a mathematical optimization method is applied which is based on non-linear programming of superstructure for minimizing the consumption of hydrogen. The method considers all the pressure constraints and is suited for revamping industrial systems. The optimum placement of new equipments like purification unit has been also considered. It is tried to verify the method adopted, in addition, an industrial case study... 

    From traditional to fractional PI control: A key for generalization

    , Article IEEE Industrial Electronics Magazine ; Volume 6, Issue 3 , 2012 , Pages 41-51 ; 19324529 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    IEEE  2012
    Abstract
    Proportional-integral (PI) controllers are the most common form of feedback used in industrial applications today [1][3]. The use of proportional and integral feedback also has a long history of practical applications [4]. For example, in the middle of the 18th century, centrifugal governors as the proportional feedback were applied to regulate the speed of windmills [5]. By the 19th century, it was known that using integral feedback could remove the offsets appearing in working with governors [6]. At present, PI control, still a very basic form of feedback, is also one of the first solutions often considered in the control of industrial systems [7]. On the other hand, in some applications,... 

    Intelligent image-based gas-liquid two-phase flow regime recognition

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 134, Issue 6 , 2012 ; 00982202 (ISSN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan Saidi, M ; Sharif University of Technology
    2012
    Abstract
    Identification of different flow regimes in industrial systems operating under two-phase flow conditions is necessary in order to safely design and optimize their performance. In the present work, experiments on two-phase flow have been performed in a large scale test facility with the length of 6 m and diameter of 5 cm. Four main flow regimes have been observed in vertical air-water two-phase flow at moderate superficial velocities of gas and water namely: Bubbly, Slug, Churn, and Annular. An image processing technique was used to extract information from each picture. This information includes the number of bubbles or objects, area, perimeter, as well as the height and width of objects... 

    Fuzzy clustering of vertical two phase flow regimes based on image processing technique

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 303-313 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan, M ; Bozorgmehry, R. B ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of industrial systems which work under two phase flow conditions, it's often needed to categorize flow into different regimes. In present work the experiments of two phase flow were done in a large scale test facility with length of 6m and 5cm diameter. Four main flow regimes were observed in vertical air-water two phase flows at moderate superficial velocities of gas and water: Bubbly, Slug, Churn and Annular. Some image processing techniques were used to extract information from each picture. This information include number of bubbles or objects, area, perimeter, height and width of objects (second phase).Also a texture feature extraction... 

    Time-average drag coefficient and void fraction in gas-liquid two phase flow

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 1083-1094 ; 9780791843727 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Two-phase flow simulations around a body were not studied before and considering these flows can play a significant role in long-term reliability and safety of industrial systems. In this paper, flow regimes, drag coefficient and void fraction around different cross-section prisms were considered. To achieve this aim, main equations of flow have been developed for investigation of drag coefficient in air-water two phase. Our numerical analyses were performed by a designed and written CFD package which is based on Eulerian-Eulerian approach. Geometries, which have been studied in this article, are: circle, rectangle and triangle, for different aspect ratio (length over width) and leading edge... 

    Intelligent regime recognition in upward vertical gas-liquid two phase flow using neural network techniques

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 293-302 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Saidi, M. H ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of some industrial systems, it's often needed to categorize two-phase flow into different regimes. In each flow regime, flow conditions have similar geometric and hydrodynamic characteristics. Traditionally, flow regime identification was carried out by flow visualization or instrumental indicators. In this research3 kind of neural networks have been used to predict system characteristic and flow regime, and results of them were compared: radial basis function neural networks, self organized and Multilayer perceptrons (supervised) neural networks. The data bank contains experimental pressure signalfor a wide range of operational conditions in...