Loading...
Search for: industrial-wastewaters
0.006 seconds
Total 30 records

    Comparison of ozonation and aeration methods in removal of naphthalene from aqueous solution

    , Article Asian Journal of Chemistry ; Volume 25, Issue 16 , 2013 , Pages 9135-9137 ; 09707077 (ISSN) Derikvand, E ; Borghei, S. M ; Hassani, A. H ; Mirbagheri, S. A ; Javid, A. H ; Sharif University of Technology
    2013
    Abstract
    High molecular mass of naphthalene make it non-biodegradable and the biological methods for treated the pollutant are much time consuming. In this paper, two methods of ozonation and aeration are used to remove naphthalene. Because of the industrial wastewater has a great range of pH, in this study different concentrations of soluble naphthalene are placed in variable pH conditions, different contact times and changes in amount of aeration and ozonation. ANOVA results indicated a significant difference between two methods. The average removal of naphthalene by use of ozonation is 55 % and 37 % for aeration. As results, the best conditions that naphthalene are removed is in acidic environment... 

    Effect of up flow velocity and temperature on the performance of UASB system treating slaughtery effluent

    , Article World Water and Environmental Resources Congress 2001, Orlando, FL, 20 May 2001 through 24 May 2001 ; Volume 111 , 2004 ; 0784405697 (ISBN); 9780784405697 (ISBN) Torkian, A ; Hashemian, S. J ; Eqbali, A ; Sharif University of Technology
    2004
    Abstract
    Temperature and up flow velocity are regarded as the two main parameters significantly affecting microbial ecology and characteristics of UASB systems. The 2.3 m high and 0.25 m2-cross-section UASB pilot used in this study received slaughtery effluent with SCOD in the range of 2000-5000 mg/L. Temperature was varied in the 28-35 °C mesophilic range using an in-line heat exchanger and three up flow velocities studied were 0.3, 0.57, and 1 m/h without any recycling. At least one-week adjustment time was allowed after any change in the conditions. Since granules had been formed previously, the start-up phase lasted for only two weeks and up flow velocity and temperature was maintained at 0.3 m/h... 

    Biosorption of Uranium from Uranium Conversion Waste using Aspergillus Niger Fungus

    , Ph.D. Dissertation Sharif University of Technology Sana, Solat (Author) ; Roosta Azad, Reza (Supervisor) ; Yaghmaei, Soheyla (Co-Advisor)
    Abstract
    Presence of heavy metals in industrial waste has always been a serious environmental problem. One of such metals in uranium that is used in important industries such as nuclear industry. Thus, it must be excluded from industrial waste efficiently. This research aimed to study effect of local strain of aspergillus niger in bioabsoprtion of uranium from industrial waste in which good absorption was reached and absorption of local strain was compared with that of control strain obtained from PTCC. Also, local strain was collected from uranium anomalies of Bandar Abbas Mining Site and was used to identify it with reference strains available at NCBI site using PCR and proliferation of part of... 

    Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions

    , Article Microchemical Journal ; Volume 145 , 2019 , Pages 767-777 ; 0026265X (ISSN) Aliannejadi, S ; Hassani, A. H ; Panahi, H. A ; Borghei, S. M ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In this study, magnetic nanoparticles (MNPs) modified with poly amidoamine (PAMAM) dendrimers - by adding methyl acrylate and ethylenediamine continuously till 10th generation- which further anchored to benzaldehyde ligand through polymeric bonding and studied as a novel method for synthesizing a nano sorbent for removing naphthalene (NAP) from aqueous environments. Synthesized nanopolymer was characterized by Fourier transform infrared spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM) equipped with EDS, X-ray Diffraction (XRD), Vibrating Sample Magnetometry (VSM), thermal gravimetric analysis (TGA). Based on the obtained analysis results synthesized average... 

    The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent

    , Article Resources, Conservation and Recycling ; Volume 40, Issue 1 , 2003 , Pages 1-11 ; 09213449 (ISSN) Torkian, A ; Eqbali, A ; Hashemian, S. J ; Sharif University of Technology
    Elsevier  2003
    Abstract
    Organic loading rate (OLR) is an important parameter significantly affecting microbial ecology and characteristics of UASB systems. In this study, UASB performance was evaluated in a 1000 1 reactor receiving feed from a traditional medium-size slaughterhouse. The initial seed for granules formed earlier was from a mesophilic municipal anaerobic digester sludge with a VSS content of 29gl-1. The temperature of influent was adjusted by an inline thermostat around 33°C. The reactor was started with an OLR of 5kg SCODm-3d-1 with gradual increase to 10kg SCOD m -3d-1 over a 2-week period. Examination of VSS data showed that on the average 89.3±11.3% of bioparticle mass was present at the lower 30%... 

    Posttreatment of upflow anaerobic sludge blanket-treated industrial wastewater by a rotating biological contactor

    , Article Water Environment Research ; Volume 75, Issue 3 , 2003 , Pages 232-237 ; 10614303 (ISSN) Torkian, A ; Alinejad, K ; Hashemian, S. J ; Sharif University of Technology
    Water Environment Federation  2003
    Abstract
    The performance of a rotating biological contactor (RBC) for posttreatment of the slaughterhouse effluent from an upflow anaerobic sludge blanket (UASB) reactor was investigated in this study. The 280-L, six-stage RBC pilot plant was operated at different organic loading rates (OLRs) and biodisk speeds. The overall removal efficiencies for soluble biochemical oxygen demand (SBOD), total biochemical oxygen demand (TBOD), and total chemical oxygen demand (TCOD) decreased with increasing OLRs. Disk rotational speed did not have a significant effect on performance in the range studied. The results showed that satisfactory posttreatment to meet regulatory requirements for agricultural purposes... 

    Removal of Cr(VI) by modified brown algae Sargassum bevanom from aqueous solution and industrial wastewater

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 44, Issue 6 , 2013 , Pages 977-989 ; 18761070 (ISSN) Javadian, H ; Ahmadi, M ; Ghiasvand, M ; Kahrizi, S ; Katal, R ; Sharif University of Technology
    2013
    Abstract
    The aim of this research work is to investigate sorption characteristic of acid treated brown algae Sargassum bevanom (acid treated S. bevanom) for the removal of Cr(VI) ions from aqueous solutions. The acid-treated alga was prepared by transferring the S. bevanom into 0.5. M HCl and then stirring the mixture at 300. rpm for 6. h at room temperature. The sorption of Cr(VI) ions by batch method is carried out. The optimum conditions of biosorption were found to be: a biomass dose of 0.7. g in 100. ml of Cr(VI), contact time of 110. min and pH 3, respectively. In optimum condition, removal efficiency was 89.64%. It was found that temperature has a positive effect on the removal efficiency.... 

    Investigation of Application of Nano-Photocatalytic Degradation for Industrial Wastewater Treatmen

    , M.Sc. Thesis Sharif University of Technology Falahati, Mohammad (Author) ; Roosta Azad, Reza (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    The main objective of this project is the deposition of photo-catalysts on cement and concrete blocks with an emphasis on commercialization. We started with an extensive study of common methods introduced in previous literature, and conclude with a number of suggestions for industrialization. First, slurry and sol-gel deposition of the photo-catalysts on blocks of type 2 commercial cement which is one of the most used materials in construction of buildings and waste-water treatment plants has been examined to reach a method of sample formation. Due to the simplicity of common methods and low quality of formed samples (less than 5 percent aging efficiency), the obtained experience was used to... 

    Nanofiltration process on dye removal from simulated textile wastewater

    , Article International Journal of Environmental Science and Technology ; Volume 5, Issue 3 , 2008 , Pages 401-408 ; 17351472 (ISSN) Hassani, H ; Mirzayee, R ; Nasseri, S ; Borghei, M ; Gholami, M ; Torabifar, B ; Sharif University of Technology
    CEERS  2008
    Abstract
    Dyestuffs removal from industrial wastewater requires special advanced technologies, since dyes are usually difficult to remove by biological methods. In this study nanofiltration process was used for removal of different dyestuffs from solutions. The rate of dye removal by spiral wound nanofiltration membrane in film thin composite MWCO=90 Dalton, was evaluated for four classes of dyes acidic, disperse, reactive and direct in red and blue dyes medium. Dye absorbance was measured by spectrophotometric method (2120 Standard Method 1998). Effects of feed concentration, pressure and total dissolved solids concentration were also studied. Results showed that increasing dye concentration lead to... 

    Construction of a New Membrane Bioreactor for Industrial Wastewater Treatment

    , M.Sc. Thesis Sharif University of Technology Anvari, Arezoo (Author) ; Seifkordi, Ali Akbar (Supervisor) ; Hemati, Mohmoud (Co-Advisor) ; Rekabdar, Fatemeh (Co-Advisor)
    Abstract
    In recent years membrane bioreactors (MBR) were widely used as an advanced process for industrial wastewater treatment. But fouling issue causes some restrictions in these systems. So for fouling reduction many researches were done.In this study for fouling improvement, blending of hydrophilic polymer (PAN) with main polymer PVDF was used. Blending membrane in phase inversion process with DMAC as solvent and water as non-solvent was made. For pore-forming in membranes, PVP as hydrophilic additive with three different composition was added and then for more enhancement of antifouling property of membrane, TiO2 nanoparticles with four different composition were added to polymeric... 

    Removal of Heavy Metal Ions and Wastewater Treatment by Using the Electrocoagulation Process

    , M.Sc. Thesis Sharif University of Technology Dehnavi, Mehdi (Author) ; Ghasemian, Saloumeh (Supervisor)
    Abstract
    Industrial wastewater treatment has always been one of the significant human being problems for the years. In particular, sewage containing heavy metals that, if discharged into nature, would have irreversible effects on the ecosystem and human health. Due to their toxic nature, heavy metals will reduce the efficiency of wastewater treatment systems if they are not efficiently treated. Also, the removal of Nitrate from the wastewater, which is one of the most stable nitrogen oxides, has always been a serious human problem in the treatment of effluents due to their high solubility in water. The simultaneous presence of nitrate and heavy metals in the effluent will cause many problems in the... 

    Improve the Structure of Membrane Bioreactor to Reduce Fouling for Industrial Waste Water Purification

    , M.Sc. Thesis Sharif University of Technology Razzaghi, Mohammad Hossein (Author) ; Seifkordi, Ali Akbar (Supervisor) ; Hemati, Mahmood (Co-Advisor)
    Abstract
    In the presence project by using of hydrophilic polymer, Cellulose acetate (CA), we tried to modify the membrane made of Polyvinylidine fluoride (PVDF). The membranes were made by phase inversion method. In five levels, at least 10% and at most 30%, CA was added to casting solution. The hydrophilicity of membranes’ surface and pore size was increased. The permeation of the neat membrane of PVDF was less than 10 , on the other hand the permeation of the membranes, which were made by adding CA, was increased up to 500 . The increment of CA more than 20% reduced the porosity of membrane. In the next step to reduce the irreversibility fouling tried to reduce the pore size by adding some... 

    Design & Manufacture of IGF/DGF Plant in Semi Industrial Scale for Wastewater Separation

    , M.Sc. Thesis Sharif University of Technology Hemmati, Amir Hossein (Author) ; Ghotbi, Siroos (Supervisor)
    Abstract
    The increasing demand for energy forced to production of oil as one of the main sources of energy. Along with the increase in oil production, the proportion of water produced with oil is increasing relative to the oil produced. On the other hand, environmental restrictions for the discharge of industrial effluents into the environment are becoming more and more stringent every day. Before discharging the effluent into the environment, petroleum must be removed. The complexity of these issues demonstrates the need to develop new technologies and improve the efficiency of existing technologies. Gas flotation are among the technologies adopted in the field that have been used throughout the... 

    Synthesis and Characterization of a Composite of ZIF-8 and TiO2 NPs as a Photocatalyst Material for Water Treatment

    , M.Sc. Thesis Sharif University of Technology Sedighi, Omid (Author) ; Dolati, Abolghasem (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    During the past few years, hexavalent chromium (Cr(VI)) is of environmental concern due to its high toxicity and mobility. Therefore, removing it from industrial wastewater is of chief significance. In this research, efficient photocatalyst materials (xµLTiO2NPs@ZIF-8) for the reduction of Cr(VI) from water resources were firstly synthesized. This composite was prepared by an in situ method with zeolitic imidazolate framework-8 as the matrix. TiO2 and ZIF-8 were selected for their excellent stability in aqueous media, high photoactivity, non-toxicity, and high surface area. The structure of the as-synthesized materials was characterized by X-ray powder diffraction (XRD), scanning electron... 

    Evaluation of the Effect of the Presence of Activated Carbon Powder on the Microbial Removal of Azomethyl Red Dye by Klebsiella Bacteria

    , M.Sc. Thesis Sharif University of Technology Rajabi, Masoud (Author) ; Yaghmaei, Soheila (Supervisor) ; Bagheri Lotfabad, Tayebeh (Supervisor)
    Abstract
    Synthetic azo dyes are one of the most common environmental pollutants in wastewater due to their many uses in various industries such as textile, printing, food, cosmetics, etc. In this project, the bacterial removal method is used to remove azo methyl red dye, and according to the functional groups on the surface of activated carbon, its effect on the efficiency and rate of the microbial removal process of azo methyl red dye is investigated. For this purpose, dye removal tests for each dye concentration (0.1 to 6 mM) in three separate series, as (1) dye removal in the presence of bacteria, (2) dye removal in the presence of activated carbon, and (3) dye removal was investigated in the... 

    Comparing the efficacy of catalytic ozonation and photocatalytical degradation of cyanide in industrial wastewater using ACF-TiO2: catalyst characterisation, degradation kinetics, and degradation mechanism

    , Article International Journal of Environmental Analytical Chemistry ; 18 May , 2020 Goodarzvand Chegini, Z ; Hassani, A. H ; Torabian, A ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In the present study, the ACF-TiO2 catalyst was synthesised and used as a catalyst for the destruction of toxic cyanide in both synthetic and real industrial wastewaters. The ACF-TiO2 catalyst was found to be micro-porous with the BET surface area of 163 m2/g. The effect of different operational parameters such as catalyst concentration, cyanide concentration, operation time, and ozone concentration were target parameters in the present study. The findings show that 500 mg/L of catalyst is the optimum value for the photocatalytical process to completely oxidise 25 mg/L of cyanide within 10 min. While it was found that 300 mg/L of catalyst in the presence of 200 mg/h ozone is enough to remove... 

    Robust and efficient zero liquid discharge design strategy using four novel desalination systems: A comprehensive 4E assessment

    , Article Journal of Cleaner Production ; Volume 310 , 2021 ; 09596526 (ISSN) Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Discharging unconventional water sources having a high content of inorganic compounds is extremely destructive to the environment. In this research, four novel semi-open-air and closed-air configurations of brine-recycle humidification-dehumidification (BRHDH) systems with zero liquid discharge (ZLD) approach are presented to treat unconventional waters cost-effectively. Bubble-column humidifiers and dehumidifiers are used to have a low initial expenditure, and system multi-staging is implemented to reduce the operating expense of the configurations. The configurations are evaluated for high saline brine treatment using comprehensive energy, exergy, exergoeconomic, and exergoenvironmental... 

    Particle removal optimization in rotating dissolved air flotation used in paper-recycling wastewater treatment

    , Article Water and Environment Journal ; 2021 ; 17476585 (ISSN) Hasannattaj Jelodar, A ; Amini Rad, H ; Borghei, S. M ; Vossoughi, M ; Rouhollahi, R ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Rotating dissolved air flotation (RDAF) has been utilized for several decades in paper-recycling wastewater treatment; however, it has rarely been addressed in the literature, which makes research into this system challenging and complicated. However, in this work, a full-scale industrial wastewater treatment system for a paper-recycling mill in Mazandaran province, Iran, was evaluated. Experiments indicated that under the same wastewater and chemical conditions, there are differences in the removal efficiencies. This finding was investigated by conducting simulation in ANSYS CFX R18.0 and experimentation simultaneously. Thus, the main purpose of this research was to optimize the operation... 

    Comparing the efficacy of catalytic ozonation and photocatalytical degradation of cyanide in industrial wastewater using ACF-TiO2: catalyst characterisation, degradation kinetics, and degradation mechanism

    , Article International Journal of Environmental Analytical Chemistry ; Volume 102, Issue 13 , 2022 , Pages 3023-3042 ; 03067319 (ISSN) Goodarzvand Chegini, Z ; Hassani, A. H ; Torabian, A ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In the present study, the ACF-TiO2 catalyst was synthesised and used as a catalyst for the destruction of toxic cyanide in both synthetic and real industrial wastewaters. The ACF-TiO2 catalyst was found to be micro-porous with the BET surface area of 163 m2/g. The effect of different operational parameters such as catalyst concentration, cyanide concentration, operation time, and ozone concentration were target parameters in the present study. The findings show that 500 mg/L of catalyst is the optimum value for the photocatalytical process to completely oxidise 25 mg/L of cyanide within 10 min. While it was found that 300 mg/L of catalyst in the presence of 200 mg/h ozone is enough to remove... 

    Study of Industrial Wastewater as Low-Salinity Water for Enhanced Oil Recovery

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Hossein (Author) ; Ayatollahi, Shahaboddin (Supervisor) ; Mahani, Hassan (Supervisor)
    Abstract
    Considering the water tensions, especially in the Middle East, water resources for the implementation of water-based EOR methods are shown to be critically limited. Water sources such as industrial wastewater hold great potential to be used for this purpose due to their significant available volume and the need for their disposal because of environmental regulations. In this research, the potential of injecting industrial wastewater, as low-salinity water, in an Iranian carbonated oil reservoir has been thoroughly investigated by conducting core-scale experiments. In this regard, we also developed a guideline for designing various types of experiments to use this "unconventional" injection...