Loading...
Search for: inertial-microfluidics
0.005 seconds

    Design and Simulation of a Spiral Based Microfluidic Device for Separation of Circulating Tumor Cells Using Tunable Nature of Viscoelastic Fluid

    , M.Sc. Thesis Sharif University of Technology Nouri, Mohammad Moein (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Nowadays, cancer, which has been mentioned as the disease of the century, is the second leading cause of death throughout the world, and its incidence is constantly increasing. Isolation of circulating tumor cells is one of the most critical steps in diagnosing and controlling cancer progression. Due to the rarity of cancer cells compared to other cells in the blood sample, the isolation process requires optimal and high-precision devices. With the advent of inertial microfluidics, the ability to control the particles movement, the processing of blood samples as quickly and accurately as possible, and the viability of cells with a high percentage, introduced microfluidic systems as a... 

    Design, Simulation and Construction of a Microfluidic Device for the Purpose of Target Cells Separation and DNA Extraction

    , M.Sc. Thesis Sharif University of Technology Amani, Ali (Author) ; Shamloo, Amir (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    Today, microfluidic experiments have found wide applications in medical sciences, engineering, and chemistry. Because of their small size, microfluidic devices help us to be able to use very little amount of sample for the experiments and also easily control and observe the under-experiment fluid. One of the most important applications of these devices is the separation of cancer cells in blood for counting their number and DNA genetic studies. In the current project we have tried to do the separation of cancer cells from other cells by designing an inertia microchannel. For this purpose, in the first step a geometry for the channel is designed with analyzing the induced forces on the cells.... 

    Simulation of Cell and Particle Separation by Combination of Dielectrophoretic and Inertial Forces in a Microfluidic Device

    , M.Sc. Thesis Sharif University of Technology Sorour Amini, Hossein (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    In this study, the dynamics of microparticles in a straight microchannel in the presence of an inhomogeneous oscillating electric field have been simulated by the immersed boundary method in combination with the lattice Boltzmann Navier-Stokes solver and the lattice Boltzmann method for solving the Poisson equation. The effect of the electric field on the location and number of particle equilibrium positions have been examined. In the absence of the electric field, circular particles will migrate to two stable equilibrium positions. The site of these equilibrium positions depends on the particle size and the fluid flow rate and is independent of the particle density. In the case of negative... 

    Spiral microchannel with stair-like cross section for size-based particle separation

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 7 , 2017 ; 16134982 (ISSN) Ghadami, S ; Kowsari Esfahan, R ; Saidi, M. S ; Firoozbakhsh, K ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Particle separation has a variety of applications in biology, chemistry and industry. Among them, circulating tumor cells (CTCs) separation has drawn significant attention to itself due to its high impact on both cancer diagnosis and therapeutics. In recent years, there has been growing interest in using inertial microfluidics to separate micro/nano particles based on their sizes. This technique offers label-free, high-throughput and efficient separation and can be easily fabricated. However, further improvements are needed for potential clinical applications. In this study, a novel inertial separation technique using spiral microchannel having stair-like cross section is introduced. The... 

    Inertial microfluidics: a method for fast prediction of focusing pattern of particles in the cross section of the channel

    , Article Analytica Chimica Acta ; Volume 1083 , 2019 , Pages 137-149 ; 00032670 (ISSN) Mashhadian, A ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Inertial microfluidics is utilized as a powerful passive method for particle and cell manipulation, which uses the hydrodynamic forces of the fluid in the channel to focus particles in specific equilibrium positions in the cross section of the channel. To achieve high performance manipulation, knowledge of focusing pattern of particles in the cross section of channel is essential. In this paper, we propose a method to address this important issue. To this end, firstly inertial microfluidics is analyzed in rectangular cross section channels. The results indicate that fluid flow velocity and channel's cross-sectional profiles have great impacts on the forces exerted on particles. Next, these... 

    Exploring contraction–expansion inertial microfluidic-based particle separation devices integrated with curved channels

    , Article AIChE Journal ; Volume 65, Issue 11 , 2019 ; 00011541 (ISSN) Shamloo, A ; Abdorahimzadeh, S ; Nasiri, R ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    Separation of particles or cells has various applications in biotechnology, pharmaceutical and chemical industry. Inertial cell separation, in particular, has been gaining a great attention in the recent years since it has exhibited a label-free, high-throughput and efficient performance. In this work, first, an inertial contraction–expansion array microchannel device, capable of passively separating two particles with diameters of 4 and 10 μm, was numerically studied. Then, the validated model was combined with curved geometries in order to investigate the effect of curve features on the separation process. The overall purpose was to investigate the interaction between the two different... 

    Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry

    , Article Electrophoresis ; Volume 41, Issue 5-6 , February , 2020 , Pages 353-359 Mihandoust, A ; Maleki Jirsaraei, N ; Rouhani, S ; Safi, S ; Alizadeh, M ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to... 

    Computational inertial microfluidics: a review

    , Article Lab on a Chip ; Volume 20, Issue 6 , 2020 , Pages 1023-1048 Razavi Bazaz, S ; Mashhadian, A ; Ehsani, A ; Saha, S. C ; Krüger, T ; Ebrahimi Warkiani, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Since the discovery of inertial focusing in 1961, numerous theories have been put forward to explain the migration of particles in inertial flows, but a complete understanding is still lacking. Recently, computational approaches have been utilized to obtain better insights into the underlying physics. In particular, fundamental aspects of particle focusing inside straight and curved microchannels have been explored in detail to determine the dependence of focusing behavior on particle size, channel shape, and flow Reynolds number. In this review, we differentiate between the models developed for inertial particle motion on the basis of whether they are semi-analytical, Navier-Stokes-based,... 

    Design, Simulation, and Fabrication of a Hybrid Inertial and Magnetophoretic Microfluidic Device for Target Cell Separation from Blood

    , Ph.D. Dissertation Sharif University of Technology Nasiri, Rohollah (Author) ; Shamloo, Amir (Supervisor) ; Akbari, Javad (Supervisor)
    Abstract
    Circulating tumor cells (CTCs) isolation from a blood sample has an important value in cancer research and its treatment. Microfluidics provides a great potential for target cell separation from biological samples by using different physical principles. Among the microfluidic cell separation methods, the inertial microfluidic devices are advantageous in handling samples for point-of-care diagnostics due to their simple structure, fast, label-free and low-cost characteristics. In this thesis, first, we designed and investigated the application of a symmetric serpentine inertial microfluidic device for the separation of CTCs from whole blood. For this purpose, numerical modeling was performed... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a...