Loading...
Search for: infertility-therapy
0.006 seconds

    Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients

    , Article Molecular Reproduction and Development ; Vol. 81, Issue. 1 , 2014 , pp. 84-86 ; ISSN: 1098-2795 Gilany, K ; Moazeni-Pourasil, R. S ; Jafarzadeh, N ; Savadi-Shiraz, E ; Sharif University of Technology
    Abstract
    It is estimated that 20% of couples are infertile, and half of these infertility cases are linked to men. One of conditions that can affect male fertility is asthenozoospermia. We applied Raman spectroscopy to the analysis of the metabolome of the human seminal plasma, and used chemometrics on the patterns of Raman spectra obtained. Significant changes were observed in the metabolome of the human seminal plasma of asthenozoospermic patients  

    The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

    , Article Journal of Assisted Reproduction and Genetics ; Volume 39, Issue 1 , 2022 , Pages 19-36 ; 10580468 (ISSN) Ahmadkhani, N ; Hosseini, M ; Saadatmand, M ; Abbaspourrad, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to... 

    Microfluidic-based droplets for advanced regenerative medicine: current challenges and future trends

    , Article Biosensors ; Volume 12, Issue 1 , 2022 ; 20796374 (ISSN) Nazari, H ; Heirani Tabasi, A ; Ghorbani, S ; Eyni, H ; Razavi Bazaz, S ; Khayati, M ; Gheidari, F ; Moradpour, K ; Kehtari, M ; Ahmadi Tafti, S.M ; Ahmadi Tafti, S. H ; Warkiani, M. E ; Sharif University of Technology
    MDPI  2022
    Abstract
    Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue...