Loading...
Search for: initial-dye-concentration
0.005 seconds

    Assessment of competitive dye removal using a reliable method

    , Article Journal of Environmental Chemical Engineering ; Vol. 2, issue. 3 , September , 2014 , p. 1672-1683 Abdi, J ; Bastani, D ; Abdi, J ; Mahmoodi, N. M ; Shokrollahi, A ; Mohammadi, A. H ; Sharif University of Technology
    Abstract
    In this study, a reliable and predictive model namely, least-squares support vector machine (LS-SVM) was developed to predict dye removal efficiency. Four LS-SVM models have been developed and tested using more than 630 series of experimental data which were obtained from our previous paper. These data consist of adsorbate type, adsorbent dosage, initial dye concentration, salt, absorbance time and dye removal efficiency. Direct Red 31 (DR31), Direct Green 6 (DG6) and Acid Blue (AB92) were used as a model dyes. The results show that the developed model is more accurate and reliable with the average absolute relative deviation of 0.678%, 0.877%, 0.581% and 0.978% for single systems and... 

    Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution

    , Article RSC Advances ; Volume 5, Issue 41 , Mar , 2015 , Pages 32263-32271 ; 20462069 (ISSN) Pourjavadi, A ; Nazari, M ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Magnetic nanocomposite hydrogels containing different amounts of graphene oxide were synthesized and characterized by FTIR, XRD, TGA, SEM, TEM, VSM and UV-vis spectroscopy. The prepared hydrogels were used as adsorbents for removal of a cationic dye, crystal violet, from water. The kinetics and isotherm of adsorption and the effect of different experimental conditions such as graphene oxide content, pH of the solution, contact time, adsorbent dosage and initial dye concentration on adsorption capacity were then investigated. Parameters related to kinetics and isotherm models were calculated and discussed. It was found that adsorption is well-described by pseudo-second-order kinetics and... 

    A new functionalized magnetic nanocomposite of poly(methylacrylate) for the efficient removal of anionic dyes from aqueous media

    , Article RSC Advances ; Volume 6, Issue 10 , 2016 , Pages 7982-7989 ; 20462069 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Nasseri, S. A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A new magnetic nano-adsorbent was synthesized via the radical polymerization of methyl acrylate on modified Fe3O4 nanoparticles, followed by its functionalization by amidation of the methyl ester groups using pentaethylenehexamine, to create active adsorption sites for removing anionic dyes from aqueous media. Physicochemical properties of the adsorbent were then characterized by SEM, TEM, XRD, FTIR, TGA and CHN analysis. The prepared nanocomposite was used as adsorbent for the removal of anionic dyes, naphthol green B and chromeazurol S, from aqueous solution and assessed in view of the kinetics and isotherm adsorption, and the effect of solution pH, contact time and initial dye... 

    Decolorization of reactive blue 19 dye from textile wastewater by the UV/H2O2 process

    , Article Journal of Applied Sciences ; Volume 8, Issue 6 , 2008 , Pages 1108-1112 ; 18125654 (ISSN) Rezaee, A ; Ghaneian, M. T ; Hashemian, S. J ; Moussavi, G ; Khavanin, A ; Ghanizadeh, G ; Sharif University of Technology
    Asian Network for Scientific Information  2008
    Abstract
    Photo-oxidation of dyes is a new concern among researchers since it offers an attractive method for decoloration of dyes and breaks them into simple mineral forms. An advanced oxidation process, UV/H2O2, was investigated in a laboratory scale photoreactor for decolorization of the Reactive blue 19 (RB19 dye from synthetic textile wastewater. The effects of operating parameters such as hydrogen peroxide dosage, pH, initial dye concentration and UV dosage, on decolorization have been evaluated. The RB19 solution was completely decolorized under optimal hydrogen peroxide dosage of 2.5 mmol L-1 and low-pressure mercury UV-C lamps (55 w) in less than 30 min. The decolorization rate followed... 

    Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO 2 composites

    , Article Materials Science in Semiconductor Processing ; Volume 15, Issue 1 , February , 2012 , Pages 73-79 ; 13698001 (ISSN) Padervand, M ; Elahifard, M. R ; Vatan Meidanshahi, R ; Ghasemi, S ; Haghighi, S ; Gholami, M. R ; Sharif University of Technology
    2012
    Abstract
    Zeolite-based Ag/AgBr and Ag/AgBr/TiO 2 photocatalysts were prepared by sol-gel and deposition methods and were characterized. Their photocatalytic activities were evaluated by inactivation of Escherichia (E.) coli and the photodegradation of Acid Blue 92 and potassium permanganate. The composites containing Ag/AgBr showed the antibacterial activity in the dark by releasing Ag ions into the medium. The results for inactivation of E. coli indicated that Ag/AgBr/TiO 2 modified photocatalyst had better antibacterial activity than Ag/AgBr/zeolite, while zeolite and TiO 2/zeolite did not show any antibacterial activity under visible light and dark conditions. Photodecolarization rate was affected... 

    Modeling the Removal of Phenol Dyes Using a Photocatalytic Reactor with SnO2/Fe3O4 Nanoparticles by Intelligent System

    , Article Journal of Dispersion Science and Technology ; Volume 36, Issue 4 , Apr , 2015 , Pages 540-548 ; 01932691 (ISSN) Sargolzaei, J ; Hedayati Moghaddam, A ; Nouri, A ; Shayegan, J ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The objective of this study was to model the extent of improvement in the degradability of phenol dyes by SnO2/Fe3O4 nanoparticles using a photocatalytic reactor. The effect of operative parameters including catalyst concentration, initial dye concentration, stirring intensity, and UV radiation intensity on the photocatalytic batch reactor during removal of phenol red was investigated. Fractional factorial design and response surface methodology were used to design the experiment layout. The SnO2/Fe3O4 nanoparticles were synthesized using the core-shell method. The results of x-ray diffraction and transmission electron microscopy showed the successful synthesis of these nanoparticles. The... 

    Copper oxide-carbon nanotube (CuO/CNT) nanocomposite: Synthesis and photocatalytic dye degradation from colored textile wastewater

    , Article Fibers and Polymers ; Volume 17, Issue 11 , 2016 , Pages 1842-1848 ; 12299197 (ISSN) Mohammad Mahmoodi, N ; Rezaei, P ; Ghotbei, C ; Kazemeini, M ; Sharif University of Technology
    Korean Fiber Society  2016
    Abstract
    In this paper, CuO/CNT nanocomposite was synthesized and its photocatalytic dye degradation ability for colored textile wastewater was studied. The characteristics of the nanocomposite were investigated by XRD, SEM and FTIR. The photodegradation of Direct Red 31 (DR31) and Reactive Red 120 (RR120) by CuO/CNT in presence of H2O2 was investigated. Photocatalytic dye degradation was determined by UV-vis spectrophotometer. Effects of catalyst dosage, initial dye concentration and salt on photodegradation performance were studied. The photocatalytic dye degradation ability of pure CuO and CuO/CNT nanocomposite is 78 % and 89 % for DR31 and 70 % and 87 % for RR120, respectively. The results showed... 

    Efficient removal of cationic dyes using a new magnetic nanocomposite based on starch-g-poly(vinylalcohol) and functionalized with sulfate groups

    , Article RSC Advances ; Volume 6, Issue 44 , 2016 , Pages 38042-38051 ; 20462069 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Tavakoli, A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A magnetic nanoparticle@starch-g-poly(vinyl sulfate) nanocomposite (MNP@St-g-PVS) as a new magnetic nano-adsorbent has been prepared based on graft copolymerization of vinyl acetate onto starch in the presence of magnetic nanoparticles, where the acetate groups were converted to hydroxyl groups followed by the sulfation of the hydroxyl groups using chlorosulfonic acid. Characterization of this magnetic nanocomposite was carried out by FTIR, TGA, XRD, VSM, SEM, TEM and elemental analysis. The resulting nanocomposite was used as an adsorbent for the removal of typical cationic dyes, methylene blue (MB) and malachite green (MG), from aqueous solutions. All experimental parameters that can... 

    Ultrafast and efficient removal of cationic dyes using a magnetic nanocomposite based on functionalized cross-linked poly(methylacrylate)

    , Article Reactive and Functional Polymers ; Volume 105 , 2016 , Pages 95-102 ; 13815148 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this study, a new magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with ethylenediamine and sodium chloroacetate. The generated magnetic nanocomposite was characterized by FT-IR, TEM, SEM, TGA, VSM, XRD and elemental analysis. Its key role as an adsorbent for the removal of typical cationic dyes, methyl violet and malachite green was investigated in terms of pH, contact time and initial dye concentration. The resulted adsorbent displays excellent adsorption capacities for cationic dyes which are more effective than most of the adsorbents reported so far.... 

    Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies

    , Article Journal of Molecular Structure ; Volume 1173 , 2018 , Pages 541-551 ; 00222860 (ISSN) Mohebali, S ; Bastani, D ; Shayesteh, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Celery residue modified with H2SO4 was utilized as a low-cost adsorbent for elimination of methylene blue cationic dye from aqueous solution in batch adsorption process. The adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The efficacy of dye removal of the modified celery residue (MCR) was verifying by changing adsorbent dose, contact time, pH, initial dye concentration, and temperature. The isotherm models analysis shows that the experimental data can be better demonstrated by Freundlich isotherm model. In order to evaluate the best fit isotherm, three error analysis methods (χ2, ARE and MPSD) as well as correlation... 

    Kinetics and adsorptive study of organic dye removal using water-stable nanoscale metal organic frameworks

    , Article Materials Chemistry and Physics ; Volume 233 , 2019 , Pages 267-275 ; 02540584 (ISSN) Hasanzadeh, M ; Simchi, A ; Shahriyari Far, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Kinetics and isotherms of adsorption behavior of nanoscale Zr-based metal-organic framework for the removal of three organic dyes including acidic, direct and basic ones from aqueous solutions were studied by sorption models. Nanocube-shaped UiO-66 particles with an average edge length of 215 nm, specific surface area of 1215 m2/g, total pore volume of 0.58 cm3/g, and average pore diameter of 1.8 nm were prepared by solvothermal methods. Analyzing of the equilibrium isotherms indicates that direct dye removal is best fitted with the Langmuir isotherm. Study of the adsorption kinetics also determines that direct dye adsorption follows pseudo-first-order model (R2=0.99). The kinetics of basic... 

    Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: Acid and CTAB-acid modified celery (Apium graveolens)

    , Article Journal of Molecular Structure ; Volume 1176 , 2019 , Pages 181-193 ; 00222860 (ISSN) Mohebali, S ; Bastani, D ; Shayesteh, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This study introduces a new and bio-friendly adsorbent based on natural and cetyltrimethylammonium bromide (CTAB) modified adsorbent, celery (Apium graveolens) residue for removal of organic pollutants. The adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and pHpzc techniques. Removal applicability and efficiency of this biosorbent were studied using Congo red (CR) as a sample organic pollutant. To reach the best results, main parameters such as pH, adsorbent mass, contact time, initial dye concentration and temperature were optimized through the adsorption experiments in a batch system. The kinetic and isotherm of CR removal... 

    Application of nanostructured aluminium titanate (Al2TiO5) photocatalyst for removal of organic pollutants from water: Influencing factors and kinetic study

    , Article Materials Chemistry and Physics ; Volume 256 , 2020 Azarniya, A ; Soltaninejad, M ; Zekavat, M ; Bakhshandeh, F ; Madaah Hosseini, H. R ; Amutha, C ; Ramakrishna, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, aluminum titanate (Al2TiO5)-based nanostructure with the outstanding photocatalytic performance was prepared via the simple citrate sol-gel method. The effects of thee operational variables such as pH, temperature, catalyst dosage, and initial dye concentration on the photodegradation efficiency of methylene blue (MB) were explored in some details. The results showed that compared to TiO2, AT benefits a superior photocatalytic activity due to its narrow band gap (2.88 eV) and low recombination rate of charge carriers. Increasing the wastewater temperature from 25 to 60 °C can improve the degradation percent from 22.15 to 52%. Based on the thermokinetic calculations, the... 

    Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase

    , Article International Biodeterioration and Biodegradation ; Volume 64, Issue 3 , 2010 , Pages 245-252 ; 09648305 (ISSN) Yousefi, V ; Kariminia, H. R ; Sharif University of Technology
    2010
    Abstract
    Enzymatic decolorization of the monoazo dye, acid orange 7 (AO7) by the fungal peroxidase from Coprinus cinereus NBRC 30628 is a complex system, which is greatly affected by temperature, pH, enzyme activity and the concentrations of H2O2 and dye concentration. The study of these factors and investigating the combined interactions between them by applying one-factor-at-a-time (OFAT) method and two other statistical methods including 2-factorial method and response surface methodology (RSM) were aimed in this work. Through OFAT analysis the optimized conditions were a temperature of 25 °C, pH 9.0 with H2O2 concentration of about 3.9 mM and AO7 concentration of 40 mg/l. A complete... 

    Kinetics investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 34, Issue 1 , 2009 , Pages 55-76 ; 14686783 (ISSN) Ghasemi, S ; Rahimnejad, S ; Rahman Setayesh, S ; Hosseini, M ; Gholami, M. R ; Sharif University of Technology
    2009
    Abstract
    TiO2 nanoparticles were prepared by the sol - gel process using 2-hydroxylethy- lammonium formate as an ionic liquid. Nanoparticles were crystallized at various temperatures (300-700°C). The products were characterized using X-ray diffraction (XRD), nitrogen adsorption - desorption isotherms and scanning electron microscopy (SEM) techniques. It was found that the resulting TiO2 nanoparticles had good thermal stability either to resist collapse or the anatase-to-rutile phase transformation during heat treatment. The photocatalytic activity of the nanocrystalline TiO2 was evaluated by the degradation of Acid Blue 92 (AB92) which is commonly used as a textile dye. The results showed that the...