Search for: initial-temperatures
0.005 seconds

    Numerical investigation of solidification of single droplets with and without evaporation mechanism

    , Article International Journal of Refrigeration ; Volume 73 , 2017 , Pages 219-225 ; 01407007 (ISSN) Mirabedin, S. M ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2017
    According to some experimental observations, water droplet with high initial temperature freezes faster than a cold one. There are some explanations to this problem such as sub-cooling, evaporation and radiation. In this work, solidification process of single droplets with and without the effect of evaporation is numerically investigated for three different drop diameters and initial temperatures. It seems that evaporation itself is able to explain why hot water freezes faster than cold water. © 2016 Elsevier Ltd and IIR  

    Study of Crystalline Structure in Random Co-polypropylene and Its Influence on Melting Behavior

    , M.Sc. Thesis Sharif University of Technology Khedri, Faezeh (Author) ; Bagheri, Reza (Supervisor) ; Asgari, Sirus (Supervisor)
    In today’s world the growth in population make food production and also the packaging industry increase. Finding new ways to enhance the efficiency of packaging is become so important beyond researchers. As the randomized co-polypropylene is the most suitable materials for this industry many attempts have been made to control its melting behavior with the aim of expanding their application in the packaging industry. The study in this field indicate the dependence of the melting behavior on the structural characteristics of the material such as molecular mass, chain structure, type of crystalline structure, and the amount of dispersion of the crystals thickness. Due to the lack of proper... 

    A thorough investigation of the effects of water depth on the performance of active solar stills

    , Article Desalination ; Vol. 347 , 2014 , Pages 77-85 ; ISSN: 00119164 Taghvaei, H ; Taghvaei, H ; Jafarpur, K ; Karimi Estahbanati, M. R ; Feilizadeh, M ; Feilizadeh, M ; Seddigh Ardekani, A ; Sharif University of Technology
    One of the most important operating parameters which affects the performance and efficiency of active solar stills is brine depth. In all of the previous experimental or theoretical studies, effects of water depth were investigated during only the first 24-hour period (or even shorter periods) of the operation of active solar stills. In other words, only the first day was taken into account. However, the production of an active solar still depends on several parameters such as brine temperature at sunrise (initial temperature), which are all affected by the depth variation after the first day of operation. However, the present research experimentally investigates the long-term effects of... 

    Prediction of thermal responses in continuous hot strip rolling processes

    , Article Production Engineering ; Vol. 9, issue. 1 , Jul , 2014 , p. 79-86 Sayadi, H ; Serajzadeh, S ; Sharif University of Technology
    Thermal behavior and require power in hot continuous strip rolling are predicted by means of a coupled finite element-upper bound approach. A thermal-finite element analysis is utilized to simultaneously determine temperature distributions within the work-piece and the work-rolls while an upper bound solution is employed at the same time to estimate the rate of heat of deformation and the required power in each rolling stand. The proposed model can be applied for determining thermal behaviors of the strip and the work-rolls in single and multi- pass rolling schedules while the effects of different parameters including initial temperature and rolling speed can be considered in the analysis.... 

    Finite element modeling of thermal and mechanical stresses in work-rolls of warm strip rolling process

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 230, Issue 6 , 2016 , Pages 1076-1086 ; 09544054 (ISSN) Koohbor, B ; Sharif University of Technology
    SAGE Publications Ltd 
    An integrated mathematical model was developed to study the thermo-mechanical behavior of strips and work-rolls during warm rolling process of steels. A two-dimensional finite element analysis was first employed to solve for the thermo-mechanical response of the rolled strip under steady-state conditions. The calculated roll pressure and temperature fields were then used to apply proper boundary conditions for solving the governing thermo-mechanical problem for the work-roll. The obtained results indicate that in warm strip rolling of steels, the thermal and mechanical stresses developed within the work-roll are comparable; however, the more significant influence is due to heating and... 

    Conventional and two step sintering of PZT-PCN ceramics

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 2 , February , 2018 ; 09478396 (ISSN) Keshavarzi, M ; Rahmani, H ; Nemati, A ; Hashemi, M ; Sharif University of Technology
    Springer Verlag  2018
    In this study, PZT-PCN ceramic was made via sol–gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed... 

    CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule

    , Article International Journal of Refrigeration ; Volume 73 , 2017 , Pages 209-218 ; 01407007 (ISSN) Sattari, H ; Mohebbi, A ; Afsahi, M. M ; Azimi Yancheshme, A ; Sharif University of Technology
    Elsevier Ltd  2017
    The present study is focused on CFD simulation of constrained melting of Phase Change Materials (PCMs) in a spherical container. To investigate the melting process of the PCM, its melting fraction was analyzed at different times. The results indicated the existence of thermally stable layers on the top of the sphere. Moreover, inspection of the calculated temperatures at different points along the vertical axis indicates the existence of some disturbances at the bottom of the sphere due to the natural convection. After the validation of the results, the effects of different parameters such as the surface temperature of the capsule, the initial temperature and the size of the spherical...