Loading...
Search for: inlet-boundary
0.005 seconds

    Solution of thermally developing zone in short micro-/nanoscale channels

    , Article Journal of Heat Transfer ; Volume 131, Issue 4 , 2009 , Pages 44501-1- 44501-5 ; 00221481 (ISSN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2009
    Abstract
    We numerically solve the Navier-Stokes equations to study the rarefied gas flow in short micro- and nanoscale channels. The inlet boundary conditions play a critical role in the structure of flow in short channels. Contrary to the classical inlet boundary conditions, which apply uniform velocity and temperature profiles right at the real channel inlet, we apply the same inlet boundary conditions, but at a fictitious position far upstream of the real channel inlet. A constant wall temperature incorporated with suitable temperature jump is applied at the channel walls. Our solutions for both the classical and extended inlet boundary conditions are compared with the results of other available... 

    Solution of thermally developing zone in short micro-/nanoscale channels

    , Article Journal of Heat Transfer ; Volume 131, Issue 4 , 2009 , Pages 1-15 ; 00221481 (ISSN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2009
    Abstract
    We numerically solve the Navier-Stokes equations to study the rarefied gas flow in short micro-and nanoscale channels. The inlet boundary conditions play a critical role in the structure of flow in short channels. Contrary to the classical inlet boundary conditions, which apply uniform velocity and temperature profiles right at the real channel inlet, we apply the same inlet boundary conditions, but at a fictitious position far upstream of the real channel inlet. A constant wall temperature incorporated with suitable temperature jump is applied at the channel walls. Our solutions for both the classical and extended inlet boundary conditions are compared with the results of other available... 

    Effects of shock wave/boundary-layer interaction on performance and stability of a mixed-compression inlet

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1811-1825 ; 10263098 (ISSN) Soltani, M. R ; Daliri, A ; Sepahi Younsi, J ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Experiments were conducted to study various kinds of Shock wave/Boundary Layer Interaction (SBLI) in an axisymmetric mixed-compression inlet. Experimental findings were compared and verified by numerical solutions where possible. Different types of SBLI relevant to the mixed-compression inlets are classified. Interactions of normal shock wave/boundary-layer at subcritical condition and in buzz condition are investigated using Schlieren and shadowgraph flow visualization as well as unsteady pressure recordings. The data is compared with the CFD predictions. Interactions of cowl lip reflected oblique shock and the terminal normal shock with the spike boundary-layer at both critical and... 

    Effect of different geometries in simulation of 3D viscous flow in francis turbine runners

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 363-369 ; 10263098 (ISSN) Firoozabadi, B ; Dadfar, R ; Pirali, A. P ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    Overall turbine analysis requires large CPU time and computer memory, even in the present days. As a result, choosing an appropriate computational domain accompanied by a suitable boundary condition can dramatically reduce the time cost of computations. This work compares different geometries for numerical investigation of the 3D flow in the runner of a Francis turbine, and presents an optimum geometry with least computational effort and desirable numerical accuracy. The numerical results are validated with a GAMM Francis Turbine runner, which was used as a test case (GAMM workshop on 3D computation of incompressible internal flows, 1989) in which the geometry and detailed best efficiency...