Loading...
Search for: innervation
0.006 seconds

    The effect of angle and level of exertion on trunk neuromuscular performance during multidirectional isometric activities

    , Article Spine ; Volume 34, Issue 5 , 2009 , Pages E170-E177 ; 03622436 (ISSN) Mousavi, J ; Olyaei, G. R ; Talebian, S ; Sanjari, M. A ; Parnianpour, M ; Sharif University of Technology
    2009
    Abstract
    STUDY DESIGN.: To quantify trunk muscle capability and controllability in different angles and levels of isometric exertion using a torque tracking system. OBJECTIVE.: To investigate the effect of biaxial isometric exertions on the maximum capability of trunk and to examine the effect of angle and level of isometric exertion on trunk controllability during the tracking task in upright posture. SUMMARY OF BACKGROUND DATA.: Combined motions of trunk at varying exertion levels occur in most daily and occupational activities and are important risk factors of low back pain. Few studies have investigated trunk capability and controllability during multidirectional activities with different... 

    Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 6 , 2009 , Pages 663-675 ; 09544119 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G ; Sharif University of Technology
    2009
    Abstract
    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional-integral-derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of... 

    Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 2 , 2005 , Pages 103-113 ; 10255842 (ISSN) Golkhou, V ; Parnianpour, M ; Lucas, C ; Sharif University of Technology
    2005
    Abstract
    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency. The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear musclelike- actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organlike sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex...