Search for: integrated-microfluidic-devices
0.008 seconds

    Fabrication of a microdialysis-based nonenzymatic microfluidic sensor for regular glucose measurement

    , Article Sensors and Actuators, B: Chemical ; Volume 333 , 2021 ; 09254005 (ISSN) Najmi, A ; Saidi, M. S ; Shahrokhian, S ; Hosseini, H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2021
    Microdialysis-based continuous glucose measuring systems are desirable candidates for accurate and biologically safe monitoring of glucose level in diabetic patients. However, it is necessary to improve these systems by utilizing highly reliable non-enzymatic sensors instead of enzymatic ones, while lowering the size and lessening the dialysis fluid consumption. Our purpose is to design an implantable integrated microfluidic device for regular nonenzymatic microdialysis-based glucose measurement. We report a novel nonenzymatic microfluidic glucose sensor based on Pt-Ni nanoparticles - multiwalled carbon nanotubes/screen-printed carbon electrode (Pt-Ni NPs-MWCNTs/SPE). Devised microfluidic... 

    A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip

    , Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a...