Loading...
Search for: interfacial-activation
0.009 seconds

    Influence of surface-modified nanoparticles on the hydrodynamics of rising bubbles

    , Article Chemical Engineering and Technology ; Volume 44, Issue 3 , 2021 , Pages 513-520 ; 09307516 (ISSN) Fayzi, P ; Bastani, D ; Lotfi, M ; Miller, R ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Local velocities of bubbles rising in four different nanosilica solutions were investigated experimentally. Also, the density, viscosity, and surface tension of fumed nanosilica and modified nanosilica solutions were measured. Heat treatment and chemical functionalization were used to modify the properties of silica nanoparticles. It was found that the addition of nanosilica affected the hydrodynamics of the rising bubble by increasing the drag friction at the interface. However, environmentally responsive nanosilica particles behaved like surfactant molecules, due to the interfacial activity of hydrophilic and hydrophobic chains. Silica nanoparticles coated with both hydrophilic and... 

    Influence of phosphate anions on the stability of immobilized enzymes. Effect of enzyme nature, immobilization protocol and inactivation conditions

    , Article Process Biochemistry ; Volume 95 , August , 2020 , Pages 288-296 Kornecki, J. F ; Carballares, D ; Morellon Sterling, R ; Siar, E. H ; Kashefi, S ; Chafiaa, M ; Arana Peña, S ; Rios, N. S ; Gonçalves, L. R. B ; Fernandez Lafuente, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A destabilizing effect at pH 7 of sodium phosphate on several lipases immobilized via interfacial activation is shown in this work. This paper investigates if this destabilizing effect is extended to other inactivation conditions, immobilization protocols or even other immobilized enzymes (ficin, trypsin, β-galactosidase, β-glucosidase, laccase, glucose oxidase and catalase). As lipases, those from Candida antarctica (A and B), Candida rugosa and Rhizomucor miehei have been used. Results confirm the very negative effect of 100 mM sodium phosphate at pH 7.0 for the stability of all studied lipases immobilized on octyl agarose, while using glutaraldehyde-support the effect is smaller (still... 

    Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process

    , Article Journal of Molecular Liquids ; Volume 362 , 2022 ; 01677322 (ISSN) Hosseinzadeh Semnani, R ; Salehi, M. B ; Mokhtarani, B ; Sharifi, A ; Mirzaei, M ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Ionic liquids (ILs) are a growing trend in Enhanced Oil Recovery (EOR) studies as alternatives to commercial surfactants due to their environmentally friendly nature, and their resistance in harsh temperatures and salinities. ILs are customizable and come in an immense variety, and therefore, it is vital that different combinations of cation/anion be investigated for use in the industry. In this work, experiments are designed and performed to evaluate novel ILs’ surface activity and performance in a lab-scale EOR set-up, compatible with Iranian oil reservoir conditions. Three imidazolium-based ionic liquids were used, namely, butyl-methylimidazolium nitrate, hexyl-methylimidazolium nitrate,...