Loading...
Search for: interfacial-flows
0.01 seconds

    Numerical investigation of two-phase secondary Kelvin-Helmholtz instability

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 228, Issue 11 , October , 2014 , Pages 1913-1924 ; ISSN: 09544062 Fatehi, R ; Shadloo, M. S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    Instability of the interface between two immiscible fluids representing the so-called Kelvin-Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers Ri=0.01 and Ri=0.1 while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow.... 

    Numerical simulation of three-dimensional interfacial flows

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 17, Issue 4 , 2007 , Pages 384-404 ; 09615539 (ISSN) Jahanbakhsh, E ; Panahi, R ; Seif, M. S ; Sharif University of Technology
    2007
    Abstract
    Purpose - This study aims to present compatible computational fluid dynamics procedure for calculation of incompressible three-dimensional time-dependent flow with complicated free surface deformation. A computer software is developed and validated using a variety of academic test cases. Design/methodology/approach - Two fluids are modeled as a single continuum with a fluid property jump at the interface by solving a scalar transport equation for volume fraction. In conjunction, the conservation equations for mass and momentum are solved using fractional step method. Here, a finite volume discretisation and colocated arrangement are used. Findings - The developed code results in accurate... 

    Computational Simulation of High Density Ratio Drop Deformation and Breakup, Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Kiani, Mehran (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Karbaschi, Mohsen (Supervisor)
    Abstract
    Deformation and breakup of drops are the basisof many interfacial flow studies and appear in a number of industrial applications, e.g., spray painting, spray combustion, emulsion, foam, sedimentation, and rain. Following their formation, drops may enter a region where hydrodynamicforces are large enough to cause their significant deformation and breakup. When a drop breaks apart into a multitude of small fragments due to disruptive hydrodynamicforces, the process is termed secondary atomization or breakup. Due to many engineering and scientific applications of multiphase and multi-component flows, they have been the main topic of many researchers for many years. Particularly, interfacial...