Loading...
Search for: interfacial-waves
0.01 seconds

    Viscous wave interaction due to motion of a surface wave over a sediment bed

    , Article 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, 20 June 2004 through 25 June 2004 ; Volume 3 , 2004 , Pages 833-838 Jamali, M ; Lawrence, G. A ; Sharif University of Technology
    2004
    Abstract
    The results of a flume investigation of surface wave motion over a fluidized bed are presented. It is shown that a resonant wave interaction between a surface wave and two interfacial waves at the interface of the fresh water and the fluidized bed is a strong mechanism for instability of the interface and the subsequent mixing of the layers. The interfacial waves are subharmonic to the surface wave and form a standing wave at the interface. The interaction is investigated theoretically using a fully viscous interaction analysis. It is shown that surface wave height and viscous effects are the determining factors in the instability mechanism. The results indicate that the net effect of... 

    Identification of evolving interfacial waves by spatial harmonic analysis

    , Article Environmental Fluid Mechanics ; Volume 17, Issue 4 , 2017 , Pages 647-664 ; 15677419 (ISSN) Fazeli, M ; Safaie, A ; Jamali, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    This paper is concerned with an analysis of image processing data to identify interfacial waves at the interface between two fluid layers in a laboratory flume. The interfacial waves are excited through a non-linear resonant interaction with a surface wave traveling in a wave flume filled with a two-layer fluid. A spatial harmonic analysis is proposed to extract information about the nonlinear evolution of the constituent waves from the interface oscillation data. The analysis is capable of handling different stages of the resonance in the wave flume and gives accurate and consistent results on time variations of the wave amplitudes. Contrary to a temporal harmonic analysis, the proposed... 

    Experimental investigation of instability of fluid mud layer under surface wave motion

    , Article Physics of Fluids ; Volume 34, Issue 3 , 2022 ; 10706631 (ISSN) Aleebrahim, M. A ; Jamali, M ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Motivated by environmental impacts of surface-wave induced mixing of fluid mud with clear water in nearshore areas, this paper presents quantitative measurements of excitation of interfacial waves over a bed mud layer by a surface wave in a wave flume. After an initial fluidization process, a quasi-standing interfacial wave comprised of four interfacial waves was observed at the interface as a result of a resonant wave interaction with the surface wave. The interfacial waves were subharmonic to the surface wave and traveled at the maximum possible angle from it. The growth rate and kinematic properties of the interfacial waves were measured, and good agreement with theoretical predictions of... 

    Cubic nonlinear analysis of interaction between a surface wave and two interfacial waves in an open two-layer fluid

    , Article Fluid Dynamics Research ; Volume 44, Issue 5 , June , 2012 ; 01695983 (ISSN) Tahvildari, N ; Jamali, M ; Sharif University of Technology
    IOP  2012
    Abstract
    A third-order asymptotic analysis is conducted to study the three-dimensional resonant interaction between a monochromatic progressive surface wave and two oblique interfacial waves in an open, lightly viscous, two-layer fluid of intermediate depth. By solving the evolution equations of the waves, the short- and long-term behaviors of the interfacial waves are studied. The analysis provides a correction to the second-order theory. The results indicate that the third-order analysis predicts a much lower limit on the growth of the interfacial waves than the second-order theory. Furthermore, in the long term, viscous effects cause the interfacial wave amplitudes to approach a constant value.... 

    Viscous wave interaction due to motion of a surface wave over a sediment bed

    , Article Journal of Offshore Mechanics and Arctic Engineering ; Volume 128, Issue 4 , 2006 , Pages 276-279 ; 08927219 (ISSN) Jamali, M ; Lawrence, G. A ; Sharif University of Technology
    2006
    Abstract
    The results of a flume experiment and a theoretical study of surface wave motion over a fluidized bed are presented. It is shown that a resonant wave interaction between a surface wave and two interfacial waves at the interface of the fresh water and the fluidized bed is a strong mechanism for instability of the interface and the subsequent mixing of the layers. The interfacial waves are subharmonic to the surface wave and form a standing wave at the interface. The interaction is investigated theoretically using a viscous interaction analysis. It is shown that surface wave height and viscous effects are the determining factors in the instability mechanism. The results indicate that the net... 

    Evolution of sub-harmonic interfacial waves generated by a surface wave through a three-wave interaction

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 225-233 ; 10263098 (ISSN) Fazeli, M ; Jamali, M ; Sharif University of Technology
    2012
    Abstract
    Higher-order effects in three-wave resonant interaction of a surface wave, with a pair of interfacial waves in a two-layer fluid, are studied theoretically. Following an initial rapid growth, the interfacial waves approach a steady state of constant amplitude. An explicit solution is presented for transition to the ultimate state of the interaction. It is shown that for interaction in a wave flume, it is necessary to include a 2nd pair of the interfacial waves, resulting from a reflection of the original pair in the analysis. The effects of different parameters on the dynamics of the interaction are investigated. The results indicate that a faster initial growth does not necessarily lead to... 

    Analytical cubic solution to weakly nonlinear interactions between surface and interfacial waves

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 31 May 2009 through 5 June 2009, Honolulu, HI ; Volume 6 , 2009 , Pages 625-630 ; 9780791843468 (ISBN) Tahvildari, N ; Jamali, M ; Sharif University of Technology
    Abstract
    Resonant interaction between one surface wave and two oblique interfacial waves is analyzed in a three dimensional system of a finite-depth, two-layer fluid. A third order perturbation analysis is carried out to obtain the evolution equations of the waves amplitudes. Taking the waves amplitudes as the perturbation small parameter, the evolution equations of the waves are solved simultaneously to obtain the short and long term behavior of the interfacial waves. In contrast to the second order analysis, the current analysis shows that after an initial exponential growth period, the interfacial waves stop growing and stabilize. Furthermore, the influences of surface wave frequency, density... 

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell