Loading...
Search for: interlayer-distance
0.005 seconds

    Ion transport through graphene oxide fibers as promising candidate for bblue energy harvesting

    , Article Carbon ; Volume 165 , 2020 , Pages 267-274 Ghanbari, H ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanostructured graphene based membranes demonstrated excellent capabilities in various applications in nanofiltration and energy conversion due to unique atomically smooth surfaces and adjustable pore size or interlayers spacing at Angstrom scales. There are some reports on the osmotic power generation using physical confinements and electrostatic interactions between ions and GO membranes. However, the results indicated insufficient power densities (˂1 W/m2) can be achieved because of swelling of interlayer spacing of the GO membranes upon exposure to aqueous solutions which results in reducing the influence of confinement on ionic motilities. Here, the GO fibers is presented as one... 

    Water desalination by charged multilayer graphene membrane: A molecular dynamics simulation

    , Article Journal of Molecular Liquids ; Volume 355 , 2022 ; 01677322 (ISSN) Mortazavi, V ; Moosavi, A ; Nouri Borujerdi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Graphene, due to its unique excellent properties, is proposed as a developing method with high efficiency compared to classical water desalination methods. In this regard, charging the membrane is considered a promising and effective approach to enhance the performance of the graphene membrane. In this research, by using molecular dynamics simulations, the water desalination by charged multilayer graphene is evaluated and the influence of electric charge amount and geometric parameters, including the pore diameter and the interlayer distance, are investigated. According to the results, the multilayer nanoporous graphene with 16.35 Å pore diameter, in which the electric charge is distributed...