Loading...
Search for: intermetallic-phasis
0.007 seconds

    Study of microstructural evolution and phase's morphology after partial remelting in A356 alloy

    , Article Semi-Solid Processing of Alloys and Composites 10 - Selected, peer reviewed papers from the 10th International Conference on Semi-Solid Processing of Alloy and Composites, S2P 2008, Aachen, 16 September 2008 through 18 September 2008 ; Volume 141-143 , 2008 , Pages 367-372 ; 10120394 (ISSN); 9771012039401 (ISBN) Mahdavi, A ; Bigdeli, M ; Hajian Heidary, M ; Khomamizadeh, F ; Sharif University of Technology
    Trans Tech Publications Ltd  2008
    Abstract
    In this work, effective parameters of SIMA process to obtain non dendritic microstructure in A356 alloy were investigated. In addition, the effect of SIMA process on the evolution of morphology of silicon and intermetallic phases in this alloy was studied. Microstructure images obtained from optical microscopy and SEM observation showed that increase in plastic work up to 40% and then holding of samples in the semi solid state at temperature of 580°C, causes that primary dendritic structure changes to non dendritic, fine and globular structure, but optimum reheating time completely depended on initial thickness of samples. If all parameters of SIMA process are the same, the grain boundaries... 

    On the formation of intermetallics during the furnace brazing of pure titanium to 304 stainless steel using Ag (30-50%)-Cu filler metals

    , Article Materials and Manufacturing Processes ; Volume 25, Issue 11 , 2010 , Pages 1333-1340 ; 10426914 (ISSN) Shafiei, A ; Abachi, P ; Dehghani, K ; Pourazarang, K ; Sharif University of Technology
    2010
    Abstract
    In the present work, the effect of brazing pa rameters on the properties of the brazed joint of pure titanium and 304 stainless steel (304SS) was investigated. Three different Ag-Cu filler metals were used, while the temperature and time of brazing were in the range of 800-950°C and 5-45 minutes, respectively. The microstructural observations show that, depending on the brazing conditions, different intermetallic phases such as CuTi2, CuTi, Cu3Ti4, and FeTi were formed at the phases interface. Based on the microstructural observations, a model was developed to characterize the formation of phases at the interfaces and brazed joint. The results show that, while some phases may form during the... 

    Intermetallic phase formation during brazing of a nickel alloy using a Ni–Cr–Si–Fe–B quinary filler alloy

    , Article Science and Technology of Welding and Joining ; Volume 24, Issue 4 , 2019 , Pages 342-351 ; 13621718 (ISSN) Ghasemi, A ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Fundamental understanding of the intermetallic phase formation is the key for enhancing the robustness and reliability of the brazed joints. The paper addresses the phase transformations during brazing of the Hastelloy X nickel-base superalloy using the quinary Ni–13Cr–4.5Si–4.2Fe–2.8B (wt-%) braze alloy. The mechanisms of intermetallic formation via solidification and solid-state precipitation are discussed. The athermal solidification zone (ASZ) is featured by the formation of brittle and hard borides and boro-silicides that are formed via eutectic reactions. However, in contrast to other commercial B-bearing Ni-based filler alloys, it was identified that the presence of a high-volume... 

    The effect of Cu powder during Friction stir welding on microstructure and mechanical properties of AA3003-H18

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 9 , 2014 , p. 3882-3891 Abnar, B ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass... 

    Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization

    , Article Materials and Design ; Volume 32, Issue 6 , 2011 , Pages 3143-3149 ; 02641275 (ISSN) Movahedi, M ; Kokabi, A. H ; Seyed Reihani, S. M ; Sharif University of Technology
    Abstract
    Al-1100/St-12 aluminum clad steel sheets were produced using roll bonding process at different reductions in thickness and with various supplemental annealing treatments. Experiments were conducted by applying the Taguchi method to obtain optimum condition for maximizing the joint strength. The joint strengths of the bi-layer sheets were evaluated by peel test. The Al/Fe intermetallic phases at the joint interface and the peeled surfaces were examined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) and Vickers microhardness test were performed to characterize the intermetallic compounds. The results indicate that at the optimum condition of 0.50 reduction in... 

    Phase formation and microstructural evolution during sintering of Al-Zn-Mg-Cu alloys

    , Article Powder Metallurgy ; Volume 53, Issue 1 , 2010 , Pages 62-70 ; 00325899 (ISSN) Shah Mohammadi, M ; Simchi, A ; Gierl, C ; Sharif University of Technology
    2010
    Abstract
    Al–5·6Zn, Al–5·6Zn–2·5Mg and Al–5·6Zn–2·5Mg–1·6Cu (wt-%) powder blends were compacted at 350 MPa and sintered in nitrogen at different temperatures to study microstructural evolution during sintering. Densification, dimensional changes and mechanical properties of the Al alloys were investigated. Microstructural analyses were performed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and simultaneous thermal analysis (STA) in order to determine the temperature and chemical composition of the phases formed during sintering. It was shown that various liquids and intermetallic phases including Al0·71Zn0·29 at 438°C,...