Loading...
Search for: internal-diameters
0.004 seconds

    Effect of empty bed residence time on biotrickling filter performance: Case study-triethylamine

    , Article International Journal of Environmental Science and Technology ; Vol. 11, issue. 1 , 2014 , pp. 183-190 ; ISSN: 17351472 Mirmohammadi, M ; Bayat, R ; Keshavarzi Shirazi, H ; Sotoudeheian, S ; Sharif University of Technology
    Abstract
    In this study, a laboratory-scale biotrickling filter (BTF) is used to remove Triethylamine (TEA) from gaseous wastes. The BTF is made of stainless steel with a height of 210 cm and an internal diameter of 21 cm packed with lava rocks. TEA elimination pattern was evaluated by changing empty bed residence times (EBRTs). The maximum elimination capacity (EC) has been determined to be 87 g/m3/h. At all EBRTs 52, 31, 20, and 10 s, contaminant transferring from gas phase to liquid was more than the EC. Also, the removal efficiency was 100 % for a mass loading of 100 g/m3/h. While the liquid recirculation velocity of 3.466 m3/m2/h was maintained, the flow rate was adjusted to 60, 100, 156, and 312... 

    Experimental investigation of extra-long pulsating heat pipe application in solar water heaters

    , Article Experimental Thermal and Fluid Science ; Volume 42 , 2012 , Pages 6-15 ; 08941777 (ISSN) Arab, M ; Soltanieh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this study, the aim is to investigate the application of pulsating heat pipes (PHPs) as a heat transfer tool in a solar water heater (SWH). For this purpose, an extra-long pulsating heat pipe (ELPHP) is designed, constructed and installed in a thermosyphon solar water heater. In this work the ELPHPs are made of copper tubes of internal diameter 2.0. mm. The number of meandering turns is 6 and the working fluid employed is distilled water. The lengths of condenser and evaporator sections are 0.8 and 0.96. m, respectively. The length of adiabatic section varies between 0.7 and 1.8. m. Inclination of the ELPHPs varies between 15° and 90° but is 45° for evaporator section. Four different... 

    Experimental investigation of pulsating heat pipes and a proposed correlation

    , Article Heat Transfer Engineering ; Volume 31, Issue 10 , Oct , 2010 , Pages 854-861 ; 01457632 (ISSN) Shafii, M. B ; Arabnejad, S ; Saboohi, Y ; Jamshidi, H ; Sharif University of Technology
    2010
    Abstract
    Pulsating heat pipes are complex heat transfer devices, and their optimum thermal performance is largely dependent on different parameters. In this paper, in order to investigate these parameters, first a closed-loop pulsating heat pipe (CLPHP) was designed and manufactured. The CLPHP was made of copper tubes with internal diameters of 1.8 mm. The lengths of the evaporator, adiabatic, and condenser sections were 60, 150, and 60 mm, respectively. Afterward, the effect of various parameters, including the working fluid (water and ethanol), the volumetric filling ratio (30%, 40%, 50%, 70%, 80%), and the input heat power (5 to 70 W), on the thermal performance of the CLPHP was investigated...