Loading...
Search for: interpenetrating-polymer-networks
0.004 seconds

    Effects of polyurethane soft segment and crosslink density on the morphology and mechanical properties of polyurethane/poly(allyl diglycol carbonate) simultaneous interpenetrating polymer networks

    , Article Journal of Applied Polymer Science ; Volume 89, Issue 6 , 2003 , Pages 1583-1595 ; 00218995 (ISSN) Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2003
    Abstract
    Tough, optically clear simultaneous interpenetrating polymer networks (SINs) of polyurethane (PU) and poly(allyl diglycol carbonate) (ADC) at different compositions were synthesized. The effects of the molecular weight of PU soft segment on the morphology, mechanical properties, and thermal transition behavior of the SINs at two levels of crosslinking agent were studied. The miscibility of PU/ADC SINs, studied by TEM and DMA, was greatly influenced by the SIN composition and the molecular weight of poly(caprolactone) diol (PCL) as the PU soft segment. A single-phase morphology at a PU concentration of 10% changed to a very fine microheterogeneous morphology as the molecular weight of PCL... 

    Swelling and mechanical behavior of nanoclay reinforced hydrogel: single network vs. full interpenetrating polymer network

    , Article Polymer Bulletin ; Volume 72, Issue 7 , March , 2015 , Pages 1663-1681 ; 01700839 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Despite the various uses of hydrogels, one of their weaknesses is the poor gel strength. To overcome this restriction, the current study has focused on simultaneously employing an interpenetrating polymer network (IPN) structure and nanocomposite hydrogels. Through this approach, the influence of nanofiller in the single network and IPN hydrogel properties was also studied in detail. For this purpose, a novel full interpenetrating polymer network (IPN) hydrogel nanocomposite based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS)/acrylic acid (AA)–sodium acrylate (AANa) was synthesized in two steps through a facile solution polymerization with incorporation of modified bentonite (MBE) as... 

    Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering

    , Article Journal of Biomaterials Applications ; Volume 36, Issue 5 , 2021 , Pages 803-817 ; 08853282 (ISSN) Shojarazavi, N ; Mashayekhan, S ; Pazooki, H ; Mohsenifard, S ; Baniasadi, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was... 

    Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior

    , Article Polymer Engineering and Science ; Volume 47, Issue 9 , 2007 , Pages 1388-1395 ; 00323888 (ISSN) Pourjavadi, A ; Ghasemzadeh, H ; Sharif University of Technology
    2007
    Abstract
    A semi-interpenetrating polymer network (semi-IPN) hydrogel based on kappa-carrageenan (κC) and poly (vinylsulfonic acid, sodium salt) (PVSA) was prepared by graft copolymerization of acrylamide (AAm) using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. FTIR spectroscopy was used for confirming the structure of the final product. It was found that the chemical composition of the Semi-IPN hydrogel is equal to the initial homopolymers and monomer feed compositions. The swelling capacity of the hydrogel was shown to be affected by the MBA, APS, and AAm concentration as well as κC/PVSA weight ratio. The swelling behavior of the hydrogel was... 

    Fabrication of in Situ Forming Bioadhesive Hydrogel for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Abdolmaleki, Hamid (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hasanzadeh, Zabihollah (Supervisor)
    Abstract
    In recent years, many efforts have been made in tissue engineering and new methods for the treatment of cartilage damage, with an emphasis on their non-invasive and less aggressive nature. Meanwhile, injectable and in situ forming hydrogels have been considered as a less invasive nature. On the other hand, lack of enough mechanical properties in these hydrogels is one of their main problem. In this study, gelatin and alginate was used to fabricate hydrogel as interpenetrating network (IPN) hydrogel and silica nano particles were also used to increase mechanical properties in the fabricating of hydrogels. Gelatin is also combined with dopamine in order to induce bio adhesive properties of... 

    Synthesis and Characterization of Mechanical and Rheological Properties of Interpenetrating Polymer Network Nanocomposite Hydrogels using Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Kheirabadi, Malihe (Author) ; Bagheri, Reza (Supervisor) ; Kabiri, Kourosh (Supervisor) ; Pourjavadi, Ali (Co-Advisor)
    Abstract
    Hydrogels are kind of polymers that have ability of frequently applications in agriculture, hygienic, drug delivery and etc. suitable mechanical strength is one of the features of this material. If mechanical strength reduces, efficiency of hydrogels in variety of application will decrease. There are several ways for gel strength improvement, such as cyclic structure for example fumarates, surface crosslinking and preparation of interpenetrating polymer networks (IPNs). Making of nanocomposite structure in hydrogels, using nanostructures, can improve physical-mechanical properties, surprisingly. Therefore, combination of interpenetrating polymer network (IPN) and nanocomposite structures can... 

    Synthesis and properties of highly swelling PAAm/chitosan semi-IPN hydrogels

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 171-176 ; 10221360 (ISSN) Mahdavinia, G. R ; Pourjavadi, A ; Zohuriaan Mehr, M. J ; Sharif University of Technology
    2008
    Abstract
    A semi-interpenetrating polymer network (semi-IPN) hydrogel composed of crosslinked chitosan and Polyacrylamide (PAAm) was prepared in the presence of formaldehyde as a crosslinker. The swelling capacity of hydrogel was shown to be affected by the crosslinker and the PAAm/chitosan ratio. The PAAm/chitosan semiIPN hydrogels are swelled at low pHs that attributed to both osmotic pressure and repulsion of -NH3+ groups on chitosan backbones. The swelling of hydrogel in acidic pHs showed that with increasing of chitosan content in the hydrogel, the swelling capacity was increased. But the swelling capacity of hydrogel in neutral pH is reversed, i.e. the higher the PAAm/chitosan ratio, the higher... 

    Structure, swelling and mechanical behavior of a cationic full-IPN hydrogel reinforced with modified nanoclay

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 5 , May , 2015 , Pages 379-388 ; 10261265 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    Despite various applications of hydrogels, they have poor gel strength and low resistance against crack propagation which lead to the limitation of their applications. For overcoming this inherent weakness, the current study has focused on the simultaneous utilization of interpenetrating polymer network (IPN) structure and nanocomposite hydrogels. It is known that IPN and nanocomposite gels can improve gel strength. The combination of IPN and nanocomposite structure was developed in hydrogels for improving gel strength. For this purpose, bentonite was successfully modified with a cationic surfactant, (3-methacrylamidopropyl) trimethyl ammonium chloride (MAPTAC), as intercalate, and... 

    An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine

    , Article Journal of Chromatography A ; Volume 1491 , 2017 , Pages 1-8 ; 00219673 (ISSN) Asgari, S ; Bagheri, H ; Es haghi, A ; Amini Tabrizi, R ; Sharif University of Technology
    Abstract
    An imprinted interpenetrating polymer network (IPN) was synthesized and used as a medium for isolation of carbamazepine from urine samples. The polymer network consisted of a homogeneous polystyrene–sol gel hybrid constructed by in–situ radical polymerization method. In this process, within the sol–gel reaction duration, styrene monomer could penetrate into the reaction mixture and after the polymerization initiation, a monolithic IPN structure was prepared. The scanning electron microscopy (SEM) image and energy dispersive spectroscopy (EDX) are indications of the polystyrene dispersion at nano- to micro-meter level in the sol gel matrix. Eventually, the synthesized IPN was used as a... 

    Fabrication of in Situ Forming Hydrogels Composed of Acellular Cartilage Matrix with Improved Mechanical Properties for Recovery of Local Damages in Articular Cartilage

    , M.Sc. Thesis Sharif University of Technology Shojarazavi, Nastaran (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hassanzadeh, Zabihollah (Co-Supervisor)
    Abstract
    Since cartilage has limited self-regeneration, in-situ forming hydrogels can act as an ideal scaffold for cartilage tissue engineering to fill the defect gap due to their ability to homogeneously encapsulate the desired cells, efficient mass transfer and minimally invasive characteristics. In this project, an injectable hydrogel with improved structure by adding silk fibroin (SF) nanofibers and better biochemical properties by employing the cartilage extracellular matrix (ECM) was fabricated. The in-situ forming hydrogel is consisted of different concentrations of ionic crosslinked alginate incorporated with different concentrations of SF nanofibers and 1% w/v enzymatically crosslinked... 

    Interpenetrating Polymer Networks as New Sorbent for Microextraction Techniques

    , M.Sc. Thesis Sharif University of Technology Khalilzadeh, Mehrdad (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    In this project, silica and polystyrene based interpenetrating polymer networks (IPNs) were used as a sorbent for microextraction in packed sorbent for having both of the polymer’s properties at the same time. Interpenetrating polymer networks were synthesized with the simultaneous method and three different kind of interpenetrating polymer networks were prepared including full-interpenetrating polymer networks, covalent semi-interpenetrating polymer networks and non-covalent semi-interpenetrating polymer networks. To investigate extraction efficiency of prepared sorbents, 41 compounds including environmental pollutants and biomolecules were chosen. Studies showed that interpenetrating... 

    Design and Fabrication of Three Dimensional Scaffold Using Bio-Printing Technique for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Mohsenifard, Sadaf (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hassanzadeh, Zabiollah (Co-Supervisor)
    Abstract
    Herein, we successfully prepared two types of hydrogels, alginate-beta-cyclodextrin based hydrogel and alginate without beta-cyclodextrin hydrogel in order to use in cartilage tissue engineering. At first, sodium alginate was modified with beta-cyclodextrin ring due to incorporate the kartogenin (KGN) differentiating drug in the hydrogel structure. For confirming the correctness of the modification reactions, H-NMR spectroscopy was used. In the presence of phenolized-ECM, alginic acid, modified alginate with beta cyclodextrin, HRP, H2O2, calcium carbonate, and glucono-delta-lactone (GDL), ECM-alginate-IPN and ECM-modified-alginate-IPN hydrogels were synthesized. Then, the KGN was loaded on... 

    Improvement in mechanical performance of anionic hydrogels using full-interpenetrating polymer network reinforced with graphene oxide nanosheets

    , Article Advances in Polymer Technology ; Volume 35, Issue 4 , 2016 , Pages 386-395 ; 07306679 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Ossipov, D. A ; Jokar, E ; Asadian, E ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    Weak mechanical possession is one of the limiting factors in application of hydrogels. To modify this inherent disadvantage, different approaches have been studied including synthesizing interpenetrating polymer network (IPN) and nanocomposite hydrogels. So, this study has focused on preparation of a novel full-IPN structure based on anionic monomers of 2-acrylamido-2-methylpropane sulfonic acid/acrylic acid–sodium acrylate via facile solution polymerization technique in an aqueous media with incorporation of graphene oxide (GO) nanosheets. Mechanical performance of materials in the “as-prepared condition” and “swollen state” was characterized via tensile, compression, and rheology tests,... 

    Investigation of novel polyurethane elastomeric networks based on polybutadiene-ol/polypropyleneoxide mixture and their structure-properties relationship

    , Article Materials and Design ; Volume 32, Issue 7 , 2011 , Pages 3933-3941 ; 02641275 (ISSN) Amrollahi, M ; Sadeghi, G. M. M ; Kashcooli, Y ; Sharif University of Technology
    2011
    Abstract
    Polyurethane elastomer networks were designed and synthesized based on hydroxyl terminated polybutadiene/polypropyleneoxide (HTPB/PPO) mixtures, 2,4-toluene diisocyanate and 1,4-butanediol. Various networks with different molar ratio of HTPB to PPO (0/100, 25/75, 50/50, 75/25 and 100/0) had been prepared. Depending on the length of soft segment, average functionality of polyol mixtures, mechanical and thermal properties of samples were varied. Our observations confirmed that final properties of the networks can be attributed to two synergistic factors: (a) formation of chemical network (crosslinking) and (b) soft segment length. An optimum composition was found. This optimum composition... 

    Novel Sol Gel– and Electrospun– Based Nanostructure Sorbents for Extraction of Drugs and Pollutants

    , Ph.D. Dissertation Sharif University of Technology Asgari, Sara (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    The main purpose of this dissertation was to synthesize nanostructured adsorbents based on the sol–gel and electrospinning methods and implement them to the trace determination of the desired analytes from different matrices. In the first and second chapters, a summary of the sol–gel and electrospinning methods along with a glance on extraction methods are presented. Then, the implemented projects are presented in the consecutive chapters.In the first work, third chapter, silica nanofibers were successfully produced using electrospinning method. In this process, sol–gel was formed during electrospinning and then, the backbone polymer was removed by heating. To obtain a thin layer of silica... 

    Biopolymeric based Interpenetrating Polymer Network for Extending the Microextraction Techniques

    , M.Sc. Thesis Sharif University of Technology Veisi, Nazila (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    In this study, gelatin/polyvinylpyrrolidone semi interpenetrating polymer network scaffold was synthesized in presence of glutaraldehyde as a cross linker and a porous structure was obtained by freeze drying method. The biocompatible network with properties like huge porosity, good thermal stability and establishing different interactions, was employed as an extractive phase in needle trap device and used for evaluation of benzene, toluene, ethylbenzene and xylene (BTEX) in conjugation with gas chromatography-flame ionization detector. For investigating semi interpenetrating polymer network efficiency, Different ratios of gelatin and polyvinylpyrrolidone (gelatin/polyvinylpyrrolidone: 1:0,... 

    Design and Manufacture of a Scaffold with a Drug Delivery System for a Better Tissue Wound Healing Process

    , M.Sc. Thesis Sharif University of Technology Shaygani, Hossein (Author) ; Shamloo, Amir (Supervisor) ; Aryanpour, Masoud (Supervisor)
    Abstract
    Articular cartilage is devoid of blood vessels, lymphatics, and nerves which gives it a very limited intrinsic healing and repair capabilities. Being under constant harsh biomechanical environment, makes maintaining the health of articular cartilage a vital principle in having healthy joints. Tissue engineering as a method for regeneration of damaged tissue have attracted a lot of attention. Articular cartilage engineered scaffolds act as a macro scale drug delivery system which in addition to having a good mechanical properties similar to that of cartilage tissue, have to provide a highly porous environment for cell migration and proliferation. The aim of this study is to fabricate a drug... 

    Improvement in mechanical performance of anionic hydrogels using full-interpenetrating Polymer Network Reinforced with Graphene Oxide Nanosheets

    , Article Advances in Polymer Technology ; 2015 ; 07306679 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Ossipov, D. A ; Jokar, E ; Asadian, E ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    Weak mechanical possession is one of the limiting factors in application of hydrogels. To modify this inherent disadvantage, different approaches have been studied including synthesizing interpenetrating polymer network (IPN) and nanocomposite hydrogels. So, this study has focused on preparation of a novel full-IPN structure based on anionic monomers of 2-acrylamido-2-methylpropane sulfonic acid/acrylic acid-sodium acrylate via facile solution polymerization technique in an aqueous media with incorporation of graphene oxide (GO) nanosheets. Mechanical performance of materials in the "as-prepared condition" and "swollen state" was characterized via tensile, compression, and rheology tests,... 

    Super-porous semi-interpenetrating polymeric composite prepared in straw for micro solid phase extraction of antibiotics from honey, urine and wastewater

    , Article Journal of Chromatography A ; Volume 1631 , 2020 Asgari, S ; Bagheri, H ; Es-haghi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A cryogel–based semi–interpenetrating polymer network (Cryo–SIPN) was prepared in which conductive polymers such as polyaniline (PANI) and polypyrrole (PPy) were formed within the super porous network of acrylic acid cryogel. For completion of cryo-polymerization, all the constituent solutions were severely mixed and placed into the plastic straws and kept at -20°C and then the synthesized cyrogels were cut into the 1-cm length and freeze dried after washing with water. The Cryo–SIPN polymeric composite was applied in micro solid phase extraction (µSPE) of some selected antibiotic residues from various samples. The µSPE method combined with a high performance liquid...