Loading...
Search for: intramolecular-hydrogen-bonding
0.007 seconds

    Conformational aspects of glutathione tripeptide: Electron density topological & natural bond orbital analyses

    , Article Structural Chemistry ; Volume 24, Issue 1 , 2013 , Pages 147-158 ; 10400400 (ISSN) Aliakbar Tehrani, Z ; Fattahi, A ; Sharif University of Technology
    2013
    Abstract
    Glutathione tripeptide (γ-glutamyl-cysteinyl-glycine) is a flexible molecule and its conformational energy landscape is strongly influenced by forming intramolecular hydrogen bond, its charge and the environment. This study employs DFT-B3LYP method with the 6-31+G (d,p) basis set to carry out conformational analysis of neutral, zwitterionic, cationic, and anionic forms of glutathione. In analyzing the structural characteristics of these structures, intramolecular hydrogen bonds were identified and characterized in details by topological parameters such as electron density ρ(r) and Laplacian of electron density Δ2 ρ(r) from Bader's atom in molecules theory. Charge transfer energies based on... 

    Synthesis and characterization of a new group of Exo-coordinating o2n2-donor macrocycles

    , Article Australian Journal of Chemistry ; Volume 69, Issue 3 , 2016 , Pages 273-278 ; 00049425 (ISSN) Ghanbari, B ; Safarkoopayeh, B ; Kia, R ; Raithby, P.R ; Sharif University of Technology
    CSIRO  2016
    Abstract
    The reaction of 15-18 membered benzodiazacrown ethers with salicylaldehyde afforded n-membered O2N2-donor macrocyclic ligands mounted with 1,3-diazacyclohexane subrings (1-4) in high yields. The products were characterized by FT-IR, 1H, 13C NMR spectroscopy, elemental analyses, and single crystal X-ray studies. The solid state structures revealed strong intramolecular hydrogen bonding between the pendant phenolic group and the tertiary nitrogen of the corresponding macroring  

    Interactions of glutathione tripeptide with gold cluster: Influence of intramolecular hydrogen bond on complexation behavior

    , Article Journal of Physical Chemistry A ; Volume 116, Issue 17 , 2012 , Pages 4338-4347 ; 10895639 (ISSN) Tehrani, Z. A ; Jamshidi, Z ; Javan, M. J ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au 3 cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Auâ€"X (X = N, O, and S) anchoring bond and Au··•·•H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been... 

    Influence of remote intramolecular hydrogen bonding on the acidity of hydroxy-1,4-benzoquinonederivatives: A DFT study

    , Article Journal of Physical Organic Chemistry ; Volume 32, Issue 4 , 2019 ; 08943230 (ISSN) Bayat, A ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    In this study, the effects of the remote intramolecular hydrogen bonding on the acidity of hydroxy-1,4-benzoquinone derivatives have been investigated ab initio by employing density functional theory (DFT) methods. The computational studies were performed for both gas and solution (H 2 O, DMSO, and MeCN solutions) phases. Our results indicated that remote hydrogen bonding could play an important role in increasing the acidity of hydroxy-1,4-benzoquinone. Noncovalent interaction reduced density gradient (NCI-RDG) methods were used to visualize the attractive and repulsive interactions in the studied acids and their conjugate bases. Natural bond orbital (NBO) analysis was performed to confirm... 

    Influence of the hydrogen bonding on the basicity of selected macrocyclic amines

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 803-810 ; 08943230 (ISSN) Nasiri, M ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    The optimized minimum-energy geometries of different macrocyclic amines and their protonated structures were determined by using ab initio and density functional theory (DFT) calculations. All the gas phase optimizations and energy calculations were performed at the DFT/B3LYP/6-311++G(d,p) level of theory. The HF/6-31 + G(d,p) level was used for all single point calculations in the solution phase. Geometry optimizations indicate that the most stable structures are stabilized by intramolecular hydrogen bonds. The proton affinity (PA) of macrocyclic amines is controlled by the strength of intramolecular hydrogen bonds of macrocyclic amines. These hydrogen bonds strongly influence the basicity... 

    Amino acid ionic liquids based on imidazolium-hydroxyl functionalized cation: New insight from molecular dynamics simulations

    , Article Journal of Molecular Liquids ; Volume 279 , 2019 , Pages 51-62 ; 01677322 (ISSN) Fakhraee, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Various thermodynamic and structural properties of amino acid ionic liquids (AAILs), comprising 1-(2-Hydroxyethyl)-3-methyl imidazolium ([C 2 OHmim] + ) cation mixed with Glycinate [Gly], Serinate [Ser], Alaninate [Ala], and Prolinate [Pro] AA anions are explored using molecular dynamic (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis. In general, the simulated thermodynamic results are in good agreement with the reported experimental data. Structural dependence of vdW- and electrostatic energies of AAILs is [Pro] > [Ala] > [Ser] > [Gly] and [Gly] > [Ala] > [Pro] > [Ser], respectively. The similar trend of electrostatic energies is found for their interaction...