Loading...
Search for: inverse-kinematic-problems
0.011 seconds

    Control of multi-agent systems based on redundant manipulator global optimization techniques

    , Article 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, 8 October 2006 through 11 October 2006 ; Volume 3 , 2006 , Pages 2499-2504 ; 1062922X (ISSN); 1424401003 (ISBN); 9781424401000 (ISBN) Sadati, N ; Elhamifar, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2006
    Abstract
    In this paper, a new approach for path generation and control of multi-agent systems is proposed. This method is based on global optimization techniques used for solving the inverse kinematic problem of redundant manipulators. Convergence of any performance function such as obstacle avoidance, collision avoidance, and heading angle to its global optimum is guaranteed by introducing a control law which is based on the Pontryagin's Maximum Principle. The efficacy of the proposed algorithm is demonstrated through simulation experiments. © 2006 IEEE  

    Collision-free path planning of a novel reconfigurable mobile parallel mechanism

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 231, Issue 20 , 2017 , Pages 3728-3742 ; 09544062 (ISSN) Nozari Porshokouhi, P ; Tale Masouleh, M ; Kazemi, H ; Sharif University of Technology
    Abstract
    This paper initially deals with the design of a new customized reconfigurable mobile parallel mechanism. This mechanism is called the 'Taar Reconfigurable ParaMobile' (TRPM), consisting of three mobile robots as the main actuators. Then, the kinematics and path planning for this mechanism are presented. The newly proposed mechanism is expected to circumvent some shortcomings of inspection operation in unknown environments with unexpected changes in their workspace, for example, in a water pipe with a non-uniform cross-sectional area. In this paper, 'Artificial Potential Field' (APF) has been assumed to be the path planning algorithm and its resulting attractive and repulsive forces are only... 

    A new obstacle avoidance method for discretely actuated hyper-redundant manipulators

    , Article Scientia Iranica ; Volume 19, Issue 4 , August , 2012 , Pages 1081-1091 ; 10263098 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, a new method is proposed for solving the obstacle avoidance problem of discretely actuated hyper-redundant manipulators. In each step of the solution, the closest collision to the base is removed and then the configuration of the next part of the manipulator is modified without considering the obstacles. This process is performed repeatedly until no collision is found. The Suthakorn method is applied to solve the inverse kinematics problem. Two new ideas are proposed to reduce the errors of this method: the two-by-two searching method, and iterations. To verify the proposed method, some problems are solved numerically for 2D and 3D manipulators, each in two different obstacle... 

    Path planning of 3-RRR parallel robot by avoiding mechanical interferences via Artificial Potential Field

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 240-245 ; 9781467372343 (ISBN) Kazemi, H ; Porshokouhi, P. N ; Masouleh, M. T ; Novin, R. S ; Sharif University of Technology
    2015
    Abstract
    This paper deals with the collision-free path planning of planar parallel robot by avoiding mechanical interferences and obstacle within the workspace. For this purpose, an Artificial Potential Field approach is developed. As the main contribution of this paper, In order to circumvent the local minima problem of the potential fields, a novel approach is proposed which is a combination of Potential Field approach, Fuzzy Logic and also a novel algorithm consisting of Following Obstacle as well as Virtual Obstacle methods, as a hybrid method. Moreover, the inverse kinematic problem of the 3-RRR parallel robot is analyzed and then the aforementioned hybrid method is applied to this mechanism in... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; February , 2015 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; Volume 35, Issue 1 , 2017 , Pages 101-118 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic...