Loading...
Search for: inverse-methods
0.004 seconds
Total 30 records

    Analytical determination of shear correction factor for Timoshenko beam model

    , Article Steel and Composite Structures ; Volume 29, Issue 4 , 2018 , Pages 483-491 ; 12299367 (ISSN) Moghtaderi, S. H ; Faghidian, S. A ; Shodja, H. M ; Sharif University of Technology
    Techno Press  2018
    Abstract
    Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the non-uniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution... 

    Regeneration of stochastic processes: An inverse method

    , Article European Physical Journal B ; Volume 47, Issue 3 , 2005 , Pages 411-415 ; 14346028 (ISSN) Ghasemi, F ; Peinke, J ; Sahimi, M ; Rahimi Tabar, M. R ; Sharif University of Technology
    2005
    Abstract
    We propose a novel inverse method that utilizes a set of data to construct a simple equation that governs the stochastic process for which the data have been measured, hence enabling us to reconstruct the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients which behave completely differently for the two classes of subjects, hence potentially providing a novel diagnostic tool for distinguishing healthy subjects from those... 

    Hydro-Acoustic Analysis and Noise Reduction of Marine Propellers Using Boundary Element Method and Inverse Method

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi, Abouzar (Author) ; Seif, Mohammad Saeed (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    One of the most important components of the noise produced by ships is the propeller noise, which reducing it can significantly reduce the overall noise of the ship. The purpose of this research is to reduce the propeller noise by combining the boundary element method, solving noise equations, and inverse method. In the first section of this thesis, a numerical flow solver software is developed that solve the flow around the impeller using the boundary element (panel) method and calculate the pressure distribution, velocity distribution, thrust, and torque of the propeller. Results show that for low skew and rake propellers, the error of numerical results is between 4 to 7 percent, and for... 

    The gas-oil gravity drainage model in a single matrix block: A new relationship between relative permeability and capillary pressure functions

    , Article Journal of Porous Media ; Vol. 14, issue. 8 , 2011 , p. 709-720 ; ISSN: 1091028X Dejam, M ; Ghazanfari, M. H ; Kamyab, M ; Masihi, M ; Sharif University of Technology
    Abstract
    This work concerns modeling of gas-oil gravity drainage for a single block of naturally fractured reservoirs. The nonlinearity induced from saturation-dependant capillary pressure and relative permeability functions makes a gravity drainage model difficult to analytically and numerically solve. Relating the capillary pressure and relative permeability functions is a potential method to overcome this problem. However, no attempt has been made in this regard. In this study a generalized one-dimensional form of gas-oil gravity drainage model in a single matrix block, presented in the literature, is considered. In contrast with commonly used forms of capillary pressure and relative permeability... 

    On a various noise source reconstruction algorithms in VVER-1000 reactor core

    , Article Nuclear Engineering and Design ; Volume 261 , 2013 , Pages 132-143 ; 00295493 (ISSN) Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    2013
    Abstract
    In present study, the neutron noise source is reconstructed using three different unfolding techniques in a typical VVER-1000 reactor core. In first stage, the neutron noise calculation based on Galerkin finite element method (GFEM) is performed; in which the neutron noise in two energy group due to the noise sources of type absorber of variable strength and vibrating absorber is calculated. The neutron noise due to inadvertent loading of a fuel assembly in an improper position (ILFAIP), as a new defined noise source in the neutron noise studies, is calculated as well. In the second stage, the inversion, zoning and scanning methods are applied for reconstruction of the noise source of type... 

    The gas-oil gravity drainage model in a single matrix block: A new relationship between relative permeability and capillary pressure functions

    , Article Journal of Porous Media ; Volume 14, Issue 8 , 2011 , Pages 709-720 ; 1091028X (ISSN) Dejam, M ; Ghazanfari, M. H ; Kamyab, M ; Masihi, M ; Sharif University of Technology
    2011
    Abstract
    This work concerns modeling of gas-oil gravity drainage for a single block of naturally fractured reservoirs. The nonlinearity induced from saturation-dependant capillary pressure and relative permeability functions makes a gravity drainage model difficult to analytically and numerically solve. Relating the capillary pressure and relative permeability functions is a potential method to overcome this problem. However, no attempt has been made in this regard. In this study a generalized one-dimensional form of gas-oil gravity drainage model in a single matrix block, presented in the literature, is considered. In contrast with commonly used forms of capillary pressure and relative permeability... 

    Novel surface modifying macromolecules (SMMs) blended polysulfone gas separation membranes by phase inversion technique

    , Article Journal of Applied Polymer Science ; Volume 124, Issue 3 , 2012 , Pages 2287-2299 ; 00218995 (ISSN) Savoji, H ; Rana, D ; Matsuura, T ; Soltanieh, M ; Tabe, S ; Sharif University of Technology
    2012
    Abstract
    In this article an attempt was made to fabricate defect-free asymmetric polysulfone (PSf) membranes for the separation of oxygen and nitrogen. The approach is based on the enhanced delayed demixing by blending surface modifying macromolecules (SMMs) in the casting solution and by immersing the cast film in isopropanol for a certain period before it is immersed in water. Different SMMs, including hydrophobic and charged SMMs, were synthesized, characterized, and blended to the host PSf. It was found that the charged SMM could indeed contribute to the removal of defective pores from the skin layer and enhancement of oxygen/nitrogen selectivity. The experimental results were further interpreted... 

    Measurement and Numerical Analysis of Submerged Propellers Noise in Far Field

    , Ph.D. Dissertation Sharif University of Technology Bagheri, Mohammad Reza (Author) ; Seif, Mohammad Saeed (Supervisor) ; Mehdigholi, Hamid (Supervisor)
    Abstract
    This thesis is concerned with measurement and analysis of noise for an underwater propeller by means of numerical and experimental methods. A major cause of noise in buoyant bodies is the propeller. Detection and measurement of such noise is a part of various engineering and maritime applications. Thus detecting the sources of sound and ways of its propagation under water is the first step in many engineering and maritime applications of underwater acoustics which leads to noise reduction and control. Due to its wide subject, this thesis presents a phenomenology of propeller noise and discusses numerical and experimental methods. In the section that deals with numerical methods, the... 

    Thermodynamic Analysis of the Temporal Changes in Salt Concentration in Saline Lakes (the case of Urmia lake)

    , M.Sc. Thesis Sharif University of Technology Emami, Neda (Author) ; Tajrishi, Masoud (Supervisor)
    Abstract
    Urmia Lake is a strong electrolyte containing various salts, with a thermodynamic identity. Changes in the temperature and volume of lake water cause a change in the concentration of ions in this brine as well as the composition and precipitation of salts in the lake. As a result of these changes, the thermodynamic properties of brine are also changed. The purpose of this study was to investigate the effect of mixing the rivers entering the lake and calculate and analyze the changes in the quality and hydrogeochemical characteristics of Urmia Lake and the amount of precipitation and dissolution of the main minerals in Urmia Lake during the period of 2007-2013 per month. For this purpose,... 

    Conditional distribution inverse method in generating uniform random vectors over a simplex

    , Article Communications in Statistics: Simulation and Computation ; Volume 40, Issue 5 , Dec , 2011 , Pages 685-693 ; 03610918 (ISSN) Moeini, A ; Abbasi, B ; Mahlooji, H ; Sharif University of Technology
    Abstract
    Motivated by numerous applications in Monte Carlo techniques and as of late, in deriving non dominated solutions in multi-objective optimization problems, this article addresses generating uniform random variables (λi, λi ≥ 0, i = 1,..., n) over a simplex in ℝ2 (n ≥ 2), i.e., Σi=1 n λi = 1. In this article, first, conditional distribution of λi where Σi=1 n λi = 1 is derived and then inverse method is applied to generate random variables  

    Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles

    , Article Separation and Purification Technology ; Volume 156 , 2015 , Pages 299-310 ; 13835866 (ISSN) Rabiee, H ; Vatanpour, V ; Davood Abadi Farahani, M. H ; Zarrabi, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, modification of polyvinyl chloride (PVC) ultrafiltration membranes with zinc oxide (ZnO) nanoparticle addition was taken into consideration. The ZnO at five different weights was added to the polymeric solution, and the membranes were fabricated by the phase inversion method using water as a nonsolvent and PEG 6 kDa as a pore former additive. The results showed that the pure water flux of the modified membranes increased up to 3 wt% ZnO addition, which was the optimized amount of the nanoparticle addition in this study. Also, at 3 wt% ZnO addition, flux recovery ratio reached from 69% to above 90%, indicated that the nanocomposite membranes were less susceptible to be fouled.... 

    Variational principles for stability analysis of multi-walled carbon nanotubes based on a nonlocal elastic shell model

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Istanbul, 12 July 2010 through 14 July 2010 ; Volume 5 , 2010 , Pages 591-598 ; 9780791849194 (ISBN) Asghari, M ; Rafati, J ; Sharif University of Technology
    2010
    Abstract
    The nonlocal continuum theories are capable to reflect the small length characteristic of nanostructures. In this work, variational principles are presented for the stability analysis of multi-walled carbon nanotubes under various mechanical loadings based on the nonlocal elastic Donnell's shell by the semi-inverse method. In this manner, a set of proper essential and natural boundary conditions for each layer of the multi-walled nanotube is derived  

    PVDF/PAN blend membrane: preparation, characterization and fouling analysis

    , Article Journal of Polymers and the Environment ; 2016 , Pages 1-11 ; 15662543 (ISSN) Anvari, A ; Azimi Yancheshme, A ; Rekaabdar, F ; Hemmati, M ; Tavakolmoghadam, M ; Safekordi, A ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Ultrafiltration membranes were prepared from blend of the poly(vinylidene fluoride) (PVDF) with polyacrylonitrile (PAN) via phase inversion method induced by immersion precipitation. N,N-dimethylacetamide (DMAc) and water were used as solvent and coagulant (non-solvent), respectively. The effect of blending ratio on the morphology and antifouling behavior of the prepared membranes was investigated. The performance of the membranes was evaluated by using cross flow filtration of pure water and buffered bovine serum albumin (BSA) solution as feed. Contact angle measurements indicated that the hydrophilicities of the PVDF/PAN membranes increased by increasing PAN concentration in the casting... 

    PVDF/PAN blend membrane: preparation, characterization and fouling analysis

    , Article Journal of Polymers and the Environment ; Volume 25, Issue 4 , 2017 , Pages 1348-1358 ; 15662543 (ISSN) Anvari, A ; Yancheshme, A. A ; Rekaabdar, F ; Hemmati, M ; Tavakolmoghadam, M ; Safekordi, A ; Sharif University of Technology
    Abstract
    Ultrafiltration membranes were prepared from blend of the poly(vinylidene fluoride) (PVDF) with polyacrylonitrile (PAN) via phase inversion method induced by immersion precipitation. N,N-dimethylacetamide (DMAc) and water were used as solvent and coagulant (non-solvent), respectively. The effect of blending ratio on the morphology and antifouling behavior of the prepared membranes was investigated. The performance of the membranes was evaluated by using cross flow filtration of pure water and buffered bovine serum albumin (BSA) solution as feed. Contact angle measurements indicated that the hydrophilicities of the PVDF/PAN membranes increased by increasing PAN concentration in the casting... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method

    , Article Separation and Purification Technology ; Volume 62, Issue 3 , 22 September , 2008 , Pages 642-647 ; 13835866 (ISSN) Mousavi, S. A ; Sadeghi, M ; Motamed Hashemi, M. M. Y ; Pourafshari Chenar, M ; Roosta Azad, R ; Sadeghi, M ; Sharif University of Technology
    2008
    Abstract
    The gas separation properties of ethylene vinyl acetate (EVA) membranes containing 18 and 28 wt% of vinyl acetate (VA) were investigated in this study. The effects of membrane preparation conditions, such as thermal and thermal/wet phase inversion, and the type of solvent on the gas separation properties of EVA membranes were investigated. The permeation of pure O2, N2, CH4, and CO2 gases at different feed pressures ranging from 2 to 11 bar were examined. The results indicated that the CO2 permeability was evidently higher than those of the other gases. Furthermore, the solubility mechanism was found to be the dominant mechanism for permeation of gases through EVA membranes. Moreover, the... 

    Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN

    , Article Materials and Design ; Volume 29, Issue 9 , 2008 , Pages 1701-1706 ; 02641275 (ISSN) Talebi Anaraki, M ; Sanjari, M ; Akbarzadeh, A ; Sharif University of Technology
    2008
    Abstract
    Inverse method and artificial neural network were employed in modeling the rheological behavior of the AZ61 Mg alloy. The hot deformation behavior of these alloys was investigated by compression tests in the temperature range 250-350 °C and strain rate range 0.0005-0.1 s-1. Investigation of stress-strain curves and microstructure of the compression specimen illustrate occurrence of dynamic recrystallization. To determining parameters of two suggested constitutive equations global optimization technique, genetic algorithm, was used. The predicted results by inverse method and ANN depicted a good agreement with the experimental data even if the ANN results has shown the best predicted... 

    Influence of novel surface modifying macromolecules and coagulation media on the gas permeation properties of different polymeric gas separation membranes

    , Article Journal of Applied Polymer Science ; Volume 124, Issue 3 , 2012 , Pages 2300-2310 ; 00218995 (ISSN) Savoji, H ; Rana, D ; Matsuura, T ; Soltanieh, M ; Tabe, S ; Sharif University of Technology
    2012
    Abstract
    Integrally skinned asymmetric membranes for the separation of O 2 and N 2 were fabricated by the phase inversion technique from polysulfone, polyetherimide, and polyimide. Two types of surface modifying macromolecules (SMMs) including hydrophilic SMM (LSMM) and charged SMM (cSMM) were synthesized and blended with the casting solution to modify the membrane surface. The cast film was then immersed in the first coagulant alcohol (methanol, ethanol, or isopropanol) for a predetermined period, before being immersed in the second coagulant (water). The SMMs used in these experiments were laboratory synthesized by the two-step process of polyurethane prepolymer synthesis and end capping, before... 

    Experimental investigation of operating conditions for preparation of PVA-PEG blend membranes using supercritical CO2

    , Article Journal of Supercritical Fluids ; Vol. 95 , November , 2014 , pp. 603-609 ; ISSN: 08968446 Taji, S ; Nejad-Sadeghi, M ; Goodarznia, I ; Sharif University of Technology
    Abstract
    Poly(vinyl alcohol)-polyethylene glycol, PVA-PEG, blended membrane were prepared using supercritical fluid assisted phase-inversion method, in which scCO2 was used as the anti-solvent. Poly(vinyl alcohol) was utilized as the main polymer, polyethylene glycol as the additive, and dimethyl sulfoxide (DMSO) as the solvent of these polymers. Taguchi method was used to investigate the effect of some operating parameters on the morphology of the membranes. The L16 orthogonal array was selected under the following conditions: pressure (100, 135, 165 and 200 bar), temperature (40, 45, 50 and 55°C) and PEG weight percent (0, 0.33, 0.66, and 1%). Total polymer concentration of solutions in all...