Loading...
Search for: irreversible-deformation
0.005 seconds

    Study of Biomolecules Imaging Using Molecular Dynamics Simulations

    , Article Nano ; Volume 10, Issue 7 , October , 2015 ; 17932920 (ISSN) Kheirodin, M ; Nejat Pishkenari, H ; Moosavi, A ; Meghdari, A ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    The process of imaging a biomolecule by atomic force microscope (AFM) is modeled using molecular dynamics (MD) simulations. Since the large normal force exerted by the tip on the biosample in contact and tapping modes may damage the sample structure and produce irreversible deformation, the noncontact mode of AFM (NC-AFM) is employed as the operating mode. The biosample is scanned using a carbon nanotube (CNT) as the AFM probe. CNTs because of their small diameter, high aspect ratio and high mechanical resistance attract many attentions for imaging purposes. The tip-sample interaction is simulated by the MD method. The protein, which has been considered as the biomolecule, is ubiquitin and a... 

    Facile synthesis of extremely biocompatible double-network hydrogels based on chitosan and poly(vinyl alcohol) with enhanced mechanical properties

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 7 , 2018 ; 00218995 (ISSN) Pourjavadi, A ; Tavakoli, E ; Motamedi, A ; Salimi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    An easy and ecofriendly method for designing double-network (DN) hydrogels based on chitosan and poly(vinyl alcohol) (PVA) with high mechanical performance is described. When covalent bonds in the networks are used as crosslinking agents in the achievement of a higher mechanical strength, the irreversible deformation of these hydrogels after a large force is applied is still one of the most important obstacles. To overcome this problem, we used physical crosslinking for both networks. The mechanical strength, surface morphology, and cytotoxicity of the films were studied by tensile testing, scanning electron microscopy analysis, and an MTT assay. The synthesized chitosan–PVA DN hydrogels... 

    Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete gravity dams

    , Article Frontiers of Structural and Civil Engineering ; Volume 15, Issue 2 , 2021 , Pages 346-363 ; 20952430 (ISSN) Daneshyar, A ; Mohammadnezhad, H ; Ghaemian, M ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    Seismic modeling of massive structures requires special caution, as wave propagation effects significantly affect the responses. This becomes more crucial when the path-dependent behavior of the material is considered. The coexistence of these conditions renders numerical earthquake analysis of concrete dams challenging. Herein, a finite element model for a comprehensive nonlinear seismic simulation of concrete gravity dams, including realistic soil-structure interactions, is introduced. A semi-infinite medium is formulated based on the domain reduction method in conjunction with standard viscous boundaries. Accurate representation of radiation damping in a half-space medium and wave...