Loading...
Search for: isolation-procedure
0.01 seconds

    A polypyrrole-based sorptive microextraction coating for preconcentration of malathion from aquatic media

    , Article Chromatographia ; Volume 74, Issue 9-10 , 2011 , Pages 731-735 ; 00095893 (ISSN) Bagheri, H ; Aghakhani, A ; Ayazi, Z ; Khakinezhad, M ; Sharif University of Technology
    Abstract
    A new micro-solid phase extraction method was developed by combining solid-phase extraction and stir bar sorptive extraction to benefit from the advantages of both techniques. A polypyrrole coating was electrochemically synthesized on the surface of an already used graphite furnace, employed in electro-thermal atomic absorption spectroscopy. The cylindrical geometry of the graphite tube provided a rather huge surface area, suitable for sorptive extraction. The novel sorbent coating was examined as an extracting medium to isolate malathion. Effects of different parameters such as extraction time, salt concentration, sample volume, desorption solvent and time were investigated and optimized.... 

    Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    , Article Analytica Chimica Acta ; Volume 713 , 2012 , Pages 63-69 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2012
    Abstract
    A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography-mass spectrometry (GC-MS). Various parameters affecting the extraction and... 

    Elimination of chromatographic and mass spectrometric problems in GC-MS analysis of Lavender essential oil by multivariate curve resolution techniques: Improving the peak purity assessment by variable size moving window-evolving factor analysis

    , Article Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences ; Volume 983-984 , 2015 , Pages 83-89 ; 15700232 (ISSN) Jalali Heravi, M ; Moazeni Pourasil, R. S ; Sereshti, H ; Sharif University of Technology
    Abstract
    In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The... 

    Synthesis of some new 1,4-distyrylbenzenes using immobilized palladium nanoparticles on silica functionalized morpholine as a recyclable catalyst

    , Article Synthesis ; Issue 10 , 2011 , Pages 1609-1615 ; 00397881 (ISSN) Niknam, K ; Gharavi, A ; Nezhad, M. R. H ; Panahi, F ; Sharbati, M. T ; Sharif University of Technology
    Abstract
    Some new 1,4-distyrylbenzene derivatives were synthesized by using immobilized palladium nanoparticles on silica-bonded N-propyl morpholine (PNP-SBNPM) as a heterogeneous catalyst. These one-pot reactions afforded a range of stereoselective, symmetrical (E)-1,4-distyrylbenzene derivatives with high yields (78-90%). The green catalyst system is recyclable and allows facile product isolation. The recycled catalyst could be reused six times without appreciable loss of catalytic activity