Loading...
Search for: jacobian-matrices
0.014 seconds

    TCP retransmission timer adjustment mechanism using system identification

    , Article Proceedings of the 2004 American Control Conference (AAC), Boston, MA, 30 June 2004 through 2 July 2004 ; Volume 3 , 2004 , Pages 2328-2332 ; 07431619 (ISSN); 0780383354 (ISBN) Haeri, M ; Rad, A. H. M ; American Automatic Control Council; International Federation of Automation Control, IFAC ; Sharif University of Technology
    2004
    Abstract
    In this paper, the TCP retransmission timer adjustment mechanism is approached from the system's theoretic point of view. TCP uses a simple recursive system identification algorithm to capture both time variant and time invariant Internet behavior and provides a dynamic Round-Trip Time (RTT) predictor. Based on real Internet data collection, it is observed that when the retransmission timer is adjusted by using the proposed predictor instead of the traditional RTT estimator, its performance increases significantly  

    An adaptive unscented Kalman filter for quaternion-based orientation estimation in low-cost AHRS

    , Article Aircraft Engineering and Aerospace Technology ; 2007 , Pages 485-493 ; 00022667 (ISSN) ; Volume 79, Issue 5 Pourtakdoust, S. H ; Ghanbarpour Asl, H ; Sharif University of Technology
    2007
    Abstract
    Purpose - This paper aims to develop an adaptive unscented Kalman filter (AUKF) formulation for orientation estimation of aircraft and UAV utilizing low-cost attitude and heading reference systems (AHRS). Design/methodology/approach - A recursive least-square algorithm with exponential age weighting in time is utilized for estimation of the unknown inputs. The proposed AUKF tunes its measurement covariance to yield optimal performance. Owing to nonlinear nature of the dynamic model as well as the measurement equations, an unscented Kalman filter (UKF) is chosen against the extended Kalman filter, due to its better performance characteristics. The unscented transformation of the UKF is shown... 

    New Jacobian matrix and equations of motion for a 6 d.o.f cable-driven robot

    , Article International Journal of Advanced Robotic Systems ; Volume 4, Issue 1 , 2007 , Pages 63-68 ; 17298806 (ISSN) Afshari, A ; Meghdari, A ; Sharif University of Technology
    InTech Europe  2007
    Abstract
    In this paper, we introduce a new method and new motion variables to study kinematics and dynamics of a 6 d.o.f cable-driven robot. Using these new variables and Lagrange equations, we achieve new equations of motion which are different in appearance and several aspects from conventional equations usually used to study 6 d.o.f cable robots. Then, we introduce a new Jacobian matrix which expresses kinematical relations of the robot via a new approach and is basically different from the conventional Jacobian matrix. One of the important characteristics of the new method is computational efficiency in comparison with the conventional method. It is demonstrated that using the new method instead... 

    TCP retransmission timer adjustment mechanism using model-based RTT predictor

    , Article 2004 5th Asian Control Conference, Melbourne, 20 July 2004 through 23 July 2004 ; Volume 1 , 2004 , Pages 686-693 ; 0780388739 (ISBN) Haeri, M ; Mohsenian Rad, A. H ; Sharif University of Technology
    2004
    Abstract
    Transmission Control Protocol (TCP) uses multiple timers to do its work. The most important of these is the retransmission timer. In this paper, the TCP retransmission timer adjustment mechanism is approached from a system point of view and a new mechanism is proposed. A simple recursive system identification algorithm is used to capture both time variant and time invariant Internet behavior. Also a dynamic model-based Round-Trip Time (RTT) predictor was provided. Based on network simulation and real Internet data collection, it was observed that when the retransmission timer is adjusted by the proposed predictor instead of the traditional RTT estimator, performance increased significantly  

    Computing all the Floquet eigenfunctions of oscillators using harmonic balance Jacobian matrices

    , Article IET Circuits, Devices and Systems ; Volume 5, Issue 4 , July , 2011 , Pages 257-266 ; 1751858X (ISSN) Jahanbakht, S ; Farzaneh, F ; Sharif University of Technology
    2011
    Abstract
    Floquet eigenfunctions and Floquet exponents are encountered in stability and noise analysis of circuits operating at large signal periodic regime. It is analytically verified that the spectrum vectors of the left-hand and right-hand Floquet eigenfunctions and the Floquet exponents (Floquet eigenpairs) are members of the harmonic balance eigenvalues and eigenvectors (HB eigenpairs). The relationships between other HB eigenpairs with the Floquet eigenpairs are discussed. This discussion leads to a practical algorithm for computing the Floquet eigenpairs through HB eigenpairs. Furthermore, it is analytically verified that the main arguments of the study are consistent with the... 

    A geometrical approach for configuration and singularity analysis of a new non-symmetric 2DOF 5R spherical parallel manipulator

    , Article Mechanism and Machine Theory ; Volume 147 , 2020 Alamdar, A. R ; Farahmand, F ; Behzadipour, S ; Mirbagheri, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A new non-symmetric 5R-SPM is introduced and a geometrical approach is developed to analyze its configurations and singularities. The proposed methodology determines the type of configuration of a 5R-SPM, i.e. regular, singular, or out-of-workspace and also the type of singularity, i.e. instantaneous or finite, only based on geometric parameters and without solving verbose kinematic equations. It also provides insights into the workspace and singularities of 5R-SPMs, in the preliminary stage of design. The mechanism was analyzed by both the new geometrical approach and conventional methods for comparison. The geometrical approach could intuitively detect all the singularities observed by the... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; 2015 ; ISSN: 02635747 Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Inverse vibration problem for un-damped 3-dimensional multi-story shear building models

    , Article Journal of Sound and Vibration ; Volume 333, Issue 1 , 6 January , 2014 , Pages 99-113 ; ISSN: 0022460X Dolatshahi, K. M ; Rofooei, F. R ; Sharif University of Technology
    Abstract
    Various researchers have contributed to the identification of the mass and stiffness matrices of two dimensional (2-D) shear building structural models for a given set of vibratory frequencies. The suggested methods are based on the specific characteristics of the Jacobi matrices, i.e., symmetric, tri-diagonal and semi-positive definite matrices. However, in case of three dimensional (3-D) structural models, those methods are no longer applicable, since their stiffness matrices are not tri-diagonal. In this paper the inverse problem for a special class of vibratory structural systems, i.e., 3-D shear building models, is investigated. A practical algorithm is proposed for solving the inverse... 

    Canonical polyadic decomposition of complex-valued multi-way arrays based on simultaneous schur decomposition

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; 2013 , Pages 4178-4182 ; 15206149 (ISSN) ; 9781479903566 (ISBN) Sardouie, S. H ; Albera, L ; Shamsollahi, M. B ; Merlet, I ; Sharif University of Technology
    2013
    Abstract
    In this paper, we propose a new semi-algebraic algorithm to compute the Canonical Polyadic (CP) decomposition of complex-valued multi-way arrays. The proposed algorithm is based on the Simultaneous Schur Decomposition (SSD) of particular matrices derived from the array to process. This CP algorithm solves some convergence problems of classical iterative techniques and its identifiability assumptions are less restrictive than those of other semi-algebraic methods. We also propose a new Jacobi-like algorithm to calculate the SSD of several complex-valued matrices. Finally the usefulness of the proposed method is illustrated in the context of fluorescence spectroscopy and epileptic source... 

    Interaction of the dynamics of doubly fed wind generators with power system electromechanical oscillations

    , Article IET Renewable Power Generation ; Volume 7, Issue 2 , March , 2013 , Pages 89-97 ; 17521416 (ISSN) Jafarian, M ; Ranjbar, A. M ; Sharif University of Technology
    2013
    Abstract
    The interaction of the dynamics of doubly fed wind generators with the electromechanical mode of nearby synchronous generators (SGs) can affect the small signal stability of power systems with high penetration levels of wind power. In this study, a novel approach is developed to investigate these interactions and their impact on the damping of power system oscillations. In this approach it is not necessary to model the dynamic behaviour of system SGs and only the frequencies of system oscillations are important. This approach is based on the sensitivity of SGs electromechanical eigenvalue with respect to variations in the Jacobian matrix of power system. By applying this approach to a test... 

    Kinematics and force analysis of a 6 degrees of freedom 3-UPS mechanism with triangular platform for haptic applications

    , Article International Conference on Control, Automation and Systems ; 2012 , Pages 694-698 ; 15987833 (ISSN) ; 9781467322478 (ISBN) Khodabakhsh, M ; Sadeghpour, M ; Hassanpour, S ; Vossoughi, G ; Sharif University of Technology
    2012
    Abstract
    This paper presents inverse dynamics equations for a 3-UPS mechanism using virtual work principle. This mechanism has three UPS legs connecting the base to a triangular platform. By changing the orientation of leg's actuators a non-symmetric mechanism with a suitable workspace near the origin without any singularity is obtained. Direct and inverse kinematics Jacobian matrices of the mechanism are obtained by the Newton-Euler approach. Then the inverse dynamics problem is solved using the principle of virtual work, so that the force and torque of active actuators have been obtained by having external forces (force and torque) acted on the platform. Force analysis of the 3-UPS mechanism has... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; June , 2015 , pp. 1383-1402 ; 02635747 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; Volume 34, Issue 6 , 2016 , Pages 1383-1402 ; 02635747 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Cambridge University Press 
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Trajectory following of a micro motion stage based on closedloop fem simulation

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 11 , 2007 , Pages 155-158 ; 079184305X (ISBN) Shahidi, A ; Mahboobi, S. H ; Pirouzpanah, S ; Esteki, H ; Sarkar, S ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Micro motion stages are one of the essential components in field of micro robotics and ultra fine positioning systems. This research presents the optimum design of a 3-DOF micro motion stage and its position control using FEM simulation. This stage to be studied uses a 3 RRR flexure hinge base compliant mechanism driven by three piezoelectric stack actuators to provide micro scale planar motion. First of all parametric modeling of the stage will be fulfilled in ANSYS environment utilizing a commercial piezostack and different types of flexure hinges. Hence the Jacobian matrix will be achieved for each case. The optimum selection of the hinge form will be achieved upon results of the previous... 

    Computational homogenization of fully coupled multiphase flow in deformable porous media

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 376 , April , 2021 ; 00457825 (ISSN) Khoei, A. R ; Saeedmonir, S ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    In this paper, a computational modeling tool is developed for fully coupled multiphase flow in deformable heterogeneous porous medium that consists of complex and non-uniform micro-structures using the dual continuum scales based on the computational homogenization approach. The first-order homogenization technique is employed to perform the multi-scale analysis. The governing equations of two-phase flow of immiscible fluids, including an equilibrium equation and two mass continuity equations, are considered based on the appropriate main variables. According to the well-known Hill–Mandel principle of macro-homogeneity, the proper energy types are defined instead of conventional stress power... 

    An efficient and robust method for optimizing the number of non-linear iterations for simulating highly heterogeneous naturally fractured reservoirs

    , Article Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2020, ADIP 2020, 9 through 12 November ; 2020 Mohajeri, S ; Eslahi, R ; Bakhtiari, M ; Alizadeh, A ; Zeinali, M ; Madani, M ; Rajabi, H ; Sharifi, E ; Mortezazadeh, E ; Mahdavifar, Y ; Sharif University of Technology
    Society of Petroleum Engineers  2020
    Abstract
    For speeding up the complex fractured reservoir simulating, we have given more attention to reducing runtime and improving efficiency of the solver. In this work, we describe an improved and computationally efficient version of Newton's method, which reduces the non-linear iteration count, increases time steps, and furthermore reduces time spent in nonlinear loops of reservoir simulating. Safeguarded variants of Newton's method which have used in current reservoir simulators cannot guarantee convergence of the solution, especially in highly heterogeneous, detailed and fractured reservoirs. In such simulators time step chopping is often observed. From other hand, with growing complexity,... 

    Adaptive fuzzy Jacobian control of spacecraft combined attitude and Sun tracking system

    , Article Aircraft Engineering and Aerospace Technology ; Volume 93, Issue 1 , 2021 , Pages 1-14 ; 17488842 (ISSN) Chak, Y. C ; Varatharajoo, R ; Assadian, N ; Sharif University of Technology
    Emerald Group Holdings Ltd  2021
    Abstract
    Purpose: The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude stabilization of a flexible satellite is generally a challenging control problem, because of the facts that satellite kinematic and dynamic equations are inherently nonlinear, the rigid–flexible coupling dynamical effect, as well as the uncertainty that arises from the effect of actuator anomalies. Design/methodology/approach: To deal with these issues in the combined attitude and Sun tracking system, a novel control scheme is proposed based on the adaptive fuzzy Jacobian approach. The augmented spacecraft model... 

    The strong tracking innovation filter

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 58, Issue 4 , 2022 , Pages 3261-3270 ; 00189251 (ISSN) Kiani, M ; Ahmadvand, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Sliding innovation filter (SIF) has recently been introduced as a robust strategy for estimation of linear systems. The SIF has been extended to nonlinear systems via analytical linearization. However, as the performance of the extended SIF (ESIF) degrades in the presence of severe nonlinearities, this article has initially developed a derivative-free cubature SIF (CSIF) that uses statistical linearization for the error propagation. In addition, the SIF gain has been reformed to incorporate the innovation covariance matrix, thus reducing the estimation error. Furthermore, the adaptive fading factor has been employed to strengthen the robustness and convergence properties of the CSIF against...