Loading...
Search for: joint-dynamical-model
0.006 seconds

    A combined dynamical sequential network for generating coupled cardiovascular signals with different beat types

    , Article ; 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL 2010, 7 November 2010 through 10 November 2010 , 2010 ; 9781424481323 (ISBN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    Abstract
    We present generalizations of the previously published artificial models for generating abnormal cardiac rhythms to provide simulations of coupled cardiovascular (CV) signals with different beat morphologies. Using a joint dynamical formulation, we generate the normal morphologies of the cardiac cycle using a sum of Gaussian kernels, fitted to real CV recordings. The joint inter-dependencies of CV signals are introduced by assuming the same angular frequency and a phase coupling. Abnormal beats are then specified as new dynamical trajectories. An ergadic first-order Markov chain is also used for switching between normal and abnormal beat types. Probability transitions can be learned from... 

    Utility of a nonlinear joint dynamical framework to model a pair of coupled cardiovascular signals

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 17, Issue 4 , 2013 , Pages 881-890 ; 21682194 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2013
    Abstract
    We have recently proposed a correlated model to provide a Gaussian mixture representation of the cardiovascular signals, with promising results in identifying rhythm disturbances. The approach provides a transformation of the data into a set of integrable Gaussians distributed over time. Looking into the model from a new joint modeling perspective, it is capable of assembling a filtered estimation, and can be used to derive temporal information of the waveforms. In this paper, we present a step-by-step derivation of the joint model putting correlation assumptions together to conclude a minimal joint description for a pair of ECG-ABP signals. We then probe novel applications of this model,... 

    Life-threatening arrhythmia verification in ICU patients using the joint cardiovascular dynamical model and a bayesian filter

    , Article IEEE Transactions on Biomedical Engineering ; Volume 58, Issue 10 PART 1 , 2011 , Pages 2748-2757 ; 00189294 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    Abstract
    In this paper, a novel nonlinear joint dynamical model is presented, which is based on a set of coupled ordinary differential equations of motion and a Gaussian mixture model representation of pulsatile cardiovascular (CV) signals. In the proposed framework, the joint interdependences of CV signals are incorporated by assuming a unique angular frequency that controls the limit cycle of the heart rate. Moreover, the time consequence of CV signals is controlled by the same phase parameter that results in the space dimensionality reduction. These joint equations together with linear assignments to observation are further used in the Kalman filter structure for estimation and tracking. Moreover,...