Loading...
Search for: joint-kinematics
0.008 seconds

    Kinematic control of a new hyper-redundant manipulator with lockable joints

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1742-1752 ; 10263098 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Kinematic control of a special hyper-redundant manipulator with lockable joints is studied. In this manipulator, the extra cables are replaced by a locking system to reduce the weight of the structure and the number of actuators. This manipulator has discrete and continuous variables due to its locking system. Therefore, a hybrid approach has been adopted in control. At first the forward kinematics and velocity kinematics of this manipulator are derived, and then a novel closed-loop control algorithm is presented. This algorithm consists of decision making, an inner loop controller, and kinematic calculation blocks. The decision making block is the logical part of the control scheme in which... 

    The effects of postural difficulty conditions on variability of joint kinematic patterns during sit to stand task in normals and patients with non-specific chronic low back pain

    , Article 2011 1st Middle East Conference on Biomedical Engineering, MECBME 2011, 21 February 2011 through 24 February 2011, Sharjah ; 2011 , Pages 300-303 ; 9781424470006 (ISBN) Tajali, S ; Negahban, H ; Yazdi, M. J. S ; Salehi, R ; Mehravar, M ; Parnianpour, M ; Sharif University of Technology
    2011
    Abstract
    Sit to stand (STS) is one of the most important activities of daily living that is shown to be affected in low back pain (LBP) patients. It requires a fundamental coordination action among all segments (DOFs) of the body in order to control important performance variables such as body's center of mass (CM) within base of support (BOS). In this study, possible differences in joint coordination and variability patterns between chronic LBP and healthy control subjects were investigated during STS task. Eleven adults with nonspecific chronic LBP and 12 healthy controls were recruited in the study. The participants performed the task in 3 exerimental conditions including: rigid surface, open eyes... 

    A multiscale phase field method for joint segmentation-rigid registration application to motion estimation of human knee joint

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 23, Issue 6 , 2011 , Pages 445-456 ; 10162372 (ISSN) Eslami, A ; Esfandiarpour, F ; Shakourirad, A ; Farahmand, F ; Sharif University of Technology
    2011
    Abstract
    Image based registration of rigid objects has been frequently addressed in the literature to obtain an object's motion parameters. In this paper, a new approach of joint segmentation-rigid registration, within the variational framework of the phase field approximation of the Mumford-Shah's functional, is proposed. The defined functional consists of two Mumford-Shah equations, extracting the discontinuity set of the reference and target images due to a rigid spatial transformation. Multiscale minimization of the proposed functional after finite element discretization provided a sub-pixel, robust algorithm for edge extraction as well as edge based rigid registration. The implementation... 

    Biomechanical analysis for the study of muscle contributions to support load carrying

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 6 , 2010 , Pages 1287-1298 ; 09544062 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    Professional Engineering Publishing  2010
    Abstract
    The objective of this study was to quantify individual muscle function differences between level walking and backpack load carriage at the same speed by using a muscle-actuated forward dynamics simulation. As experimental investigations have revealed that backpack loads of up to 64 per cent of an individual's body mass have little effect on the sagittal plane gait kinema-tics, further biomechanical analyses are necessary to investigate the contributions of individual muscle coordination strategies to achieve a given motor task by mechanical power generation, absorption, and transference to each body segment. A biomechanical framework consisting of a musculoskeletal model actuated by 18... 

    Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 7 , 2009 , Pages 863-874 ; 09544119 (ISSN) Ghafari, A. S ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    The main scope of this study is to analyse muscle-driven forward dynamics simulation of stair locomotion to understand the functional differences of individual muscles during the movement. A static optimization was employed to minimize a performance criterion based on the muscle energy consumption to resolve muscle redundancy during forward dynamics simulation. The proposed method was employed to simulate a musculoskeletal system with ten degrees of freedom in the sagittal plane and containing 18 Hill-type musculotendon actuators per leg. Simulation results illustrated that simulated joint kinematics closely tracked experimental quantities with root-mean-squared errors less than 1°. In... 

    Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 6 , 2009 , Pages 663-675 ; 09544119 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G ; Sharif University of Technology
    2009
    Abstract
    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional-integral-derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of...