Loading...
Search for: jumping-process
0.004 seconds

    Dynamic modeling and analysis of the human jumping process

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 37, Issue 1 , 2003 , Pages 97-115 ; 09210296 (ISSN) Meghdari, A ; Aryanpour, M ; Sharif University of Technology
    2003
    Abstract
    Humanoid robots have recently been the subject of many new and interesting fields both in robotics research and industry. The wide variety of their applications in civic and hostile environments demand developing approperiate theoretical models for analysis. A dynamical model was developed to study the human jumping process, and the effect of factors like joint speeds and hand motion in jumping. An experiment was designed and setup to compare the theoretical model with experimental observations. Time histories of vertical force, mass center velocity and driving torques were also obtained. Using dynamical equations, the effect of joint speeds on the maximum values of these quantities is... 

    Stochastic processes with jumps and non-vanishing higher-order kramers–moyal coefficients

    , Article Understanding Complex Systems ; 2019 , Pages 99-110 ; 18600832 (ISSN) Rahimi Tabar, M. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this chapter we study stochastic processes in the presence of jump discontinuity, and discuss the meaning of non-vanishing higher-order Kramers–Moyal coefficients. We describe in details the stochastic properties of Poisson jump processes. We derive the statistical moments of the Poisson process and the Kramers–Moyal coefficients for pure Poisson jump events. Growing evidence shows that continuous stochastic modeling (white noise-driven Langevin equation) of time series of complex systems should account for the presence of discontinuous jump components [1–6]. Such time series have some distinct important characteristics, such as heavy tails and occasionally sudden large jumps.... 

    Stochastic processes with jumps and non-vanishing higher-order kramers–moyal coefficients

    , Article Understanding Complex Systems ; 2019 , Pages 99-110 ; 18600832 (ISSN) Rahimi Tabar, M. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this chapter we study stochastic processes in the presence of jump discontinuity, and discuss the meaning of non-vanishing higher-order Kramers–Moyal coefficients. We describe in details the stochastic properties of Poisson jump processes. We derive the statistical moments of the Poisson process and the Kramers–Moyal coefficients for pure Poisson jump events. Growing evidence shows that continuous stochastic modeling (white noise-driven Langevin equation) of time series of complex systems should account for the presence of discontinuous jump components [1–6]. Such time series have some distinct important characteristics, such as heavy tails and occasionally sudden large jumps.... 

    Electrowetting induced droplet jumping over a bump

    , Article Extreme Mechanics Letters ; Volume 32 , 2019 ; 23524316 (ISSN) ; https://www.sciencedirect.com/science/article/pii/S2352431619300410 Merdasi, A ; Daeian, M. A ; Moosavi, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    We study electrowetting induced droplet jumping over a system consisting of a flat surface and a topographical bump mounted on the surface. Different bump shapes including triangular and elliptical configurations are considered and the results are compared with the results of the flat surface. The results indicate that droplet jumping is enhanced over the bumps and the droplet jumps to larger heights compared with the flat surface because of the lower viscous dissipation. The shape of the bump can considerably affect the droplet dynamics. Between the considered shapes the triangular bump provides a larger dynamic and the droplet on the surface with this bump can jump with larger velocity....