Loading...
Search for: kinematic-parameters
0.005 seconds

    A reliability study of the new sensors for movement analysis (SHARIF-HMIS)

    , Article Journal of Bodywork and Movement Therapies ; Volume 20, Issue 2 , 2016 , Pages 341-345 ; 13608592 (ISSN) Abedi, M ; Dehghan Manshadi, F ; Khalkhali Zavieh, M ; Ashouri, S ; Azimi, H ; Parnanpour, M ; Sharif University of Technology
    Churchill Livingstone  2016
    Abstract
    Aim: SHARIF-HMIS is a new inertial sensor designed for movement analysis. The aim of the present study was to assess the inter-tester and intra-tester reliability of some kinematic parameters in different lumbar motions making use of this sensor. Materials and methods: 24 healthy persons and 28 patients with low back pain participated in the current reliability study. The test was performed in five different lumbar motions consisting of lumbar flexion in 0, 15, and 30° in the right and left directions. For measuring inter-tester reliability, all the tests were carried out twice on the same day separately by two physiotherapists. Intra-tester reliability was assessed by reproducing the tests... 

    A Hough based data association algorithm for target tracking

    , Article International Radar Symposium, IRS 2011 - Proceedings, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 623-628 ; 9783927535282 (ISBN) Mahdavi, A ; Moqiseh, A ; Nayebi, M. M ; Sharif University of Technology
    2011
    Abstract
    A new approach for tracking targets in TWS systems is introduced which is based on Hough transform. The main idea is to take target's velocity and course of motion as the main tracking quantities and calculate other kinematic parameters of the target from these two main parameters. The main criteria for associating targets to tracks in Data Association (DA) step is co linearity of targets with the history of track and Hough transform is the main tool in this step. Computer simulation results are presented to compare the performance of the suggested algorithm with the conventional tracking systems  

    A three-invariant cap plasticity model with kinematic hardening rule for powder materials

    , Article Journal of Materials Processing Technology ; Volume 187-188 , 2007 , Pages 680-684 ; 09240136 (ISSN) Khoei, A. R ; DorMohammadi, H ; Azami, A. R ; Sharif University of Technology
    2007
    Abstract
    In this paper, a three-invariant cap plasticity with a kinematic hardening rule is presented for powder materials. A general form is developed for the cap plasticity which can be compared with some common double-surface plasticity models proposed for powders in literature. The constitutive elasto-plastic matrix and its components are derived based on the definition of yield surface, hardening parameter and non-linear elastic behavior, as function of relative density of powder. The procedure for determination of powder parameters is described. Finally, the applicability of the proposed model is demonstrated in numerical simulation of triaxial and confining pressure tests. © 2006 Elsevier B.V.... 

    A cable-driven grasping mechanism with lock/unlock constraints

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 6 A , 2013 ; 9780791855935 (ISBN) Abyaneh, S ; Saber, O ; Zohoor, H ; Sharif University of Technology
    American Society of Mechanical Engineers  2013
    Abstract
    The application of manipulators is becoming more and more popular in object handling especially when it is desired to have access to remote areas in destructive or hazardous taskspaces. For this purpose, a hand-like mechanism must be designed to be used as an end-effector, which can grasp objects. In this paper a cable driven grasping mechanism has been presented. In the proposed mechanism each finger consists of three phalanxes which are actuated by a single motor. Locking and unlocking constraints are used in the mechanism in order to generate an anthropomorphic motion, in which, the order of reaching phalanxes to the object is sequential. In this way, each phalanx starts moving toward the... 

    An experimental study on the kinematics of a skilled service in playing tennis

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 2 , 2010 , Pages 565-568 ; 9780791844267 (ISBN) Ahmadi, S. M ; Shirzad, E ; Sajadi, B ; Cheraghi, M ; Haghighi, K ; Sharif University of Technology
    Abstract
    This paper studies the effective parameters of a skilled service in playing tennis and determines their relationship with skill deals. Effective service in tennis plays an important role in gaining more desirable result and the most important factor of success in getting scores depends on the player's skills in serving an effective service. The characteristics of a good service are the high speed of the ball and the precision of landing the ball. The several parameters affecting on these two characteristic in the service, are studied in this paper. Therefore, the Kinematic parameters of 8 Iranian professional tennis athletes of first division tennis league and also 8 non-professional Iranian... 

    A three-invariant cap plasticity with isotropic-kinematic hardening rule for powder materials: Model assessment and parameter calibration

    , Article Computational Materials Science ; Volume 41, Issue 1 , 2007 , Pages 1-12 ; 09270256 (ISSN) Khoei, A. R ; DorMohammadi, H ; Sharif University of Technology
    2007
    Abstract
    The constitutive modeling of powder is clearly a keystone of successful quantitative solution possibilities. Without a reasonable constitutive model, which can reproduce complicated powder behavior under loading conditions, the computations are worthless. In this paper, a three-invariant cap plasticity model with isotropic-kinematic hardening rule is presented for powder materials. A generalized single-cap plasticity is developed which can be compared with some common double-surface plasticity models proposed for powders in literature. The hardening rule is defined based on the isotropic and kinematic material functions. The constitutive elasto-plastic matrix and its components are derived... 

    Sharif-human movement instrumentation system (SHARIF-HMIS) for daily activities

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012, 20 December 2012 through 21 December 2012 ; 2012 , Pages 143-148 ; 9781467331302 (ISBN) Mokhlespour, M. I ; Zobeiri, O ; Akbari, A ; Milani, Y ; Narimani, R ; Moshiri, B ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    Wearable measuring system has major effects on biomechanics of human movements especially in daily activities in order to monitor and analyze the human movements to achieve the most important kinematics parameters. In the recent decade, inertial sensors were utilized by researchers in order to developing wearable system for instrumentation of human movements. In this study, Sharif-Human Movement Instrumentation System (SHARIF-HMIS) was designed and manufactured. The system consists of inertial measurement units (IMUs), stretchable clothing and data logger. The IMU sensors are installed on the human body. The system can be used at home and also industrial environments. The main features of... 

    Design of pid controller for control of speed of the robotic fish modeled by Lighthill's large amplitude elongated body theory in linear path

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 10, Issue PART A , 2010 , Pages 117-124 ; 9780791843833 (ISBN) Shahi, M ; Meghdari, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    Design of robotic fish based on hydrodynamics is presented and Lighthill's Large Amplitude Elongated Body Theory (LAEBT) is used for modeling of the robotic fish in linear path. A PID controller for control of speed in linear path is designed and simulations are presented which shows its effectiveness for speed control of the robotic fish. It has been shown that in perspective of used approximate LAEBT model, the used control law maintains kinematic parameters and therefore, the associated efficiency will be maintained  

    Hand acceleration measurement by Kinect for rehabilitation applications

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 191-201 ; 10263098 (ISSN) Mobini, A ; Behzadipour, S ; Foumani, M. S ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Affordable motion sensors that are recently developed for video gaming have formed a budding line of research in the field of physical rehabilitation. These sensors have been used in many task-based applications to analyze the patients' status based on their completion of assigned tasks. However, as the accuracy of such sensors is lower than that of the clinical ones, their measured data has had very limited use in quantitative motion analysis to this date. The aim of this article is to determine Kinect's ability and accuracy in calculating higher-order kinematic parameters, such as velocity and acceleration, in hand movements. Four methods, i.e. moving average, Butterworth filter, B-spline,... 

    A practical sensor-based methodology for the quantitative assessment and classification of chronic non specific low back patients (NSLBP) in clinical settings

    , Article Sensors (Switzerland) ; Volume 20, Issue 10 , 2020 Davoudi, M ; Shokouhyan, S. M ; Abedi, M ; Meftahi, N ; Rahimi, A ; Rashedi, E ; Hoviattalab, M ; Narimani, R ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The successful clinical application of patient-specific personalized medicine for the management of low back patients remains elusive. This study aimed to classify chronic nonspecific low back pain (NSLBP) patients using our previously developed and validated wearable inertial sensor (SHARIF-HMIS) for the assessment of trunk kinematic parameters. One hundred NSLBP patients consented to perform repetitive flexural movements in five different planes of motion (PLM): 0◦ in the sagittal plane, as well as 15◦ and 30◦ lateral rotation to the right and left, respectively. They were divided into three subgroups based on the STarT Back Screening Tool. The sensor was placed on the trunk of each... 

    Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray's in flapping motion

    , Article Applied Ocean Research ; Volume 109 , 2021 ; 01411187 (ISSN) Safari, H ; Abbaspour, M ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Manta ray swimming or bio-inspiration propulsion system, as a special type of marine propulsion system, is used for submersible vehicles that require high-speed maneuverability and stability, such as glider and AUV. In a manta ray swimming, the thrust force is generated by a couple of undulation and oscillation of wing, so that the direction of undulation wave and oscillation is upright and perpendicular to the direction of thrust force, respectively. It is possible to combine these two movement modes (flapping motion) on the three-dimensional model without considering the effects of wing twisting and flexibility to simplify and better understand the physical behaviors or special study of... 

    Strain gradient beam element

    , Article Finite Elements in Analysis and Design ; Volume 68 , June , 2013 , Pages 63-75 ; 0168874X (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The classical continuum theory is neither able to accurately model the mechanical behavior of micro/nano-scale structures nor capable of justifying the size-dependent behavior observed in these structures; so the non-classical continuum theories such as the strain gradient theory have been emerged and developed. In order to enable the finite element method (FEM) to more accurately deal with the problems in micro/nano-scale structures, a size-dependent Euler-Bernoulli beam element is developed based on the strain gradient theory. Compared to the classical Euler-Bernoulli beam element, the nodal displacement vector of the new Euler-Bernoulli beam element has an additional component, i.e. the...