Loading...
Search for: kinetic-and-mechanism
0.007 seconds

    Kinetics and mechanism of diallyl sulfoxide pyrolysis; a combined theoretical and experimental study in the gas phase

    , Article RSC Advances ; Volume., 4, No (108) , Nov , 2014 , pp. (62809-62816) Izadyar, M. (Mohammad) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    A combined experimental and computational study was carried out on the gas phase pyrolysis reaction of diallylsulfoxide. Allylalcohol and Thioacrolein were detected as the major products during a unimolecular reaction. Experimental kinetic studies were carried out via a static system over the pressure of 21-55 torr and temperature of 435.2-475.1 K. Based on the experiments, the reaction is homogeneous and proceeds through a zwitterionic intermediate. Computational studies at the DFT (B3LYP) and QCISD(T) levels with 6-311++G(d,p) basis set indicated a two-step concerted pathway as the possible route. Comparison between the experimental and theoretical activation parameters for the most... 

    Comparison and reduction of the chemical kinetic mechanisms proposed for thermal partial oxidation of methane (TPOX) in porous media

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 37 , 2021 , Pages 19312-19322 ; 03603199 (ISSN) Fotovat, F ; Rahimpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The effectiveness and reducibility of the methane combustion kinetic mechanisms were examined for the TPOX process in a porous medium. To this end, TPOX was successfully simulated using ANSYS CHEMKIN-Pro through a reactor network model composed of perfectly stirred and honeycomb-monolith reactors. The efficacy of six chemical kinetic mechanisms was compared for the equivalence ratios (ERs) ranging from 2.4 to 2.6 with a constant thermal load of 1540 kW/m2. This comparison revealed that Konnov was the most successful mechanism in the prediction of the H2 and CO mole fractions. This mechanism along with the GRI-3.0 and USC-Mech 2.0 mechanisms were then reduced by the direct relation graph with... 

    DFT calculations on the retro-ene reactions, part II: Allyl n-propyl sulfide pyrolysis in the gas phase

    , Article Journal of Molecular Structure: THEOCHEM ; Volume 686, Issue 1-3 , 2004 , Pages 37-42 ; 01661280 (ISSN) Izadyar, M ; Gholami, M. R ; Haghgu, M ; Sharif University of Technology
    2004
    Abstract
    The mechanism and kinetic aspects of the retro-ene reaction of the Allyl n-propyl sulfide and its deuterated derivative were studied using four different types of density functional theory methods with eight different levels of the basis sets. The activation energies were determined at 550.65 K. As a consequence of our calculations, a transition state is concluded that consists of a polar six-center cyclic structure. We found that the combination B3PW91/6-311++G** produces activation energy values closer to the experimental ones, but the simpler combination B3LYP/6-31G* produces excellent values too in less time. Our calculations show that the activation parameters obtained from the B3... 

    Cyclohexene oxidation catalyzed by flower-like core-shell Fe3O4@Au/metal organic frameworks nanocomposite

    , Article Materials Chemistry and Physics ; Volume 213 , July , 2018 , Pages 472-481 ; 02540584 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, Fe3O4@Au/metal-organic frameworks (Fe3O4@Au/MOF) nanocomposite with flower-like core-shell structure was successfully synthesized via a hydrothermal route. The as-prepared catalyst was characterized using different techniques such as FT-IR, XRD, TEM, EDX, VSM, TGA, BET, and ICP. This nanocomposite exhibited an excellent catalytic performance in selective oxidation of cyclohexene to 2-cyclohexene-1-one by using molecular oxygen as green oxidant. The influence of reaction conditions including, pressure of molecular oxygen, temperature, time, solvent, and amount of catalyst on conversion and selectivity of products were evaluated. The activation energy (Ea) of the reaction was... 

    Numerical investigation of gaseous hydrogen and liquid oxygen combustion under subcritical condition

    , Article Energy and Fuels ; Volume 33, Issue 9 , 2019 , Pages 9249-9271 ; 08870624 (ISSN) Mardani, A ; Ghasempour Farsani, A ; Farshchi, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    This study is on combustion modeling of gaseous hydrogen and cryogenic liquid oxygen at the subcritical condition for the well-known Mascotte laboratory combustor. The proposed strategy relies on the hybrid Eulerian-Lagrangian framework in which the continuous phase is evaluated by Reynolds Average Navier-Stokes (RANS) equations and the quick discretization method. The dispersed phase of the combustion field is evaluated by the Discrete Phase Method (DPM). The Eddy Dissipation Concept (EDC) has been performed for combustion-turbulence interaction modeling. Effects of the turbulence model, chemical kinetic mechanism, equation of state, and inlet momentum jet flux are investigated in terms of... 

    The effect of prestrain temperature on kinetics of static recrystallization, microstructure evolution, and mechanical properties of low carbon steel

    , Article Journal of Materials Engineering and Performance ; Volume 27, Issue 5 , 2018 , Pages 2049-2059 ; 10599495 (ISSN) Akbari, E ; Karimi Taheri, K ; Karimi Taheri, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static... 

    Comparing the efficacy of catalytic ozonation and photocatalytical degradation of cyanide in industrial wastewater using ACF-TiO2: catalyst characterisation, degradation kinetics, and degradation mechanism

    , Article International Journal of Environmental Analytical Chemistry ; Volume 102, Issue 13 , 2022 , Pages 3023-3042 ; 03067319 (ISSN) Goodarzvand Chegini, Z ; Hassani, A. H ; Torabian, A ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In the present study, the ACF-TiO2 catalyst was synthesised and used as a catalyst for the destruction of toxic cyanide in both synthetic and real industrial wastewaters. The ACF-TiO2 catalyst was found to be micro-porous with the BET surface area of 163 m2/g. The effect of different operational parameters such as catalyst concentration, cyanide concentration, operation time, and ozone concentration were target parameters in the present study. The findings show that 500 mg/L of catalyst is the optimum value for the photocatalytical process to completely oxidise 25 mg/L of cyanide within 10 min. While it was found that 300 mg/L of catalyst in the presence of 200 mg/h ozone is enough to remove... 

    Kinetics and reaction mechanism of isothermal oxidation of Iranian ilmenite concentrate powder

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 112, Issue 2 , 2013 , Pages 781-789 ; 13886150 (ISSN) Mozammel, M ; Sadrnezhaad, S. K ; Khoshnevisan, A ; Youzbashizadeh, H ; Sharif University of Technology
    2013
    Abstract
    Thermal oxidation of commercial ilmenite concentrate from Kahnouj titanium mines, Iran, at 500-950 C was investigated for the first time. Fractional conversion was calculated from mass change of the samples during oxidation. Maximum FeO to Fe2O3 conversion of 98.63 % occurred at 900 C after 120 min. Curve fit trials together with SEM line scan results indicated constant-size shrinking core model as the closest kinetic mechanism of the oxidation process. Below 750 C, chemical reaction with activation energy of 80.65 kJ mol-1 and between 775 and 950 C, ash diffusion with activation energy of 53.50 kJ mol-1 were the prevailing mechanisms. X-ray diffraction patterns approved presence of... 

    Synthesis and characterization of new biopolymeric microcapsules containing DEHPA-TOPO extractants for separation of uranium from phosphoric acid solutions

    , Article Journal of Microencapsulation ; Volume 28, Issue 4 , 2011 , Pages 248-257 ; 02652048 (ISSN) Outokesh, M ; Tayyebi, A ; Khanchi, A ; Grayeli, F ; Bagheri, G ; Sharif University of Technology
    Abstract
    A novel microcapsule adsorbent for separation of uranium from phosphoric acid solutions was developed by immobilizing the di(2-ethylhexyl) phosphoric acid-trioctyl phosphine oxide extractants in the polymeric matrix of calcium alginate. Physical characterization of the microcapsules was accomplished by scanning electron microscopy and thermogravimetric techniques. Equilibrium experiments revealed that both ion exchange and solvent extraction mechanisms were involved in the adsorption of ions, but the latter prevailed in a wider range of acid concentration. According to the results of kinetics study, at low acidity level, the rate controlling step was slow chemical reaction of ions with the... 

    Mechanically activated synthesis of single crystalline MgO nanostructures

    , Article Journal of Alloys and Compounds ; Volume 506, Issue 2 , September , 2010 , Pages 715-720 ; 09258388 (ISSN) Nusheh, M ; Yoozbashizadeh, H ; Askari, M ; Kobatake, H ; Fukuyama, H ; Sharif University of Technology
    2010
    Abstract
    One-dimensional (1D) MgO structures were successfully synthesized via carbothermic reduction of mechanically activated mixture of MgO and graphite. Mechanical activation of source materials before carbothermic reduction can substantially enhance the formation of MgO products at a temperature (1000 °C) relatively lower than that required in previous approaches (≥1200 °C). However, the morphology of MgO formed is dependent on the degree of mechanical activation and the condition of the subsequent carbothermic reduction. Two distinctive morphologies were found for MgO products synthesized using our method: single crystalline nanorods with rectangular cross-sections whose diameters range from 50... 

    Investigation of the effect of reformer gas on PRFs HCCI combustion based on exergy analysis

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 7 , 2016 , Pages 4278-4295 ; 03603199 (ISSN) Neshat, E ; Saray, R. K ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Lack of a direct method to control combustion timing is one of the main disadvantages of homogeneous charge compression ignition (HCCI) engines. Fuel blending, in which two fuels with different auto-ignition characteristics are blended, can be used to control combustion timing. Utilizing different additives is another method for HCCI combustion control. The aim of this research is investigation on the effect of reformer gas addition on the availability terms in HCCI engines fueled with primary reference fuels (PRFs). A multi zone model (MZM) coupled with a semi detailed chemical kinetics mechanism is used for calculation of different terms of exergy analysis. Heat and mass transfer between... 

    Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 6 , 2018 ; 09478396 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Abstract: Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s−1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s−1), and Au@g-C3N4 (0.012 s−1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in... 

    Stable trans isomer as the kinetic and theromodynamic product for the oxidative addition of MeI to cycloplatinated(II) complexes comprising isocyanide ligands

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 4 , 2018 ; 02682605 (ISSN) Shahsavari, H. R ; Babadi Aghakhanpour, R ; Hossein Abadi, M ; Kia, R ; Raithby, P. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The present investigation introduces a new series of cycloplatinated(II) complexes, with the general formula Pt(O-bpy)(Me)(CN-R)] (R = benzyl, 2-naphtyl and tert-butyl), which are able to generate the stable trans-Pt(IV) product in the solution after the reaction with iodomethane. In fact, the trans product is both the kinetic and thermodynamic product of the reaction; this observation was supported by DFT calculations. These Pt(II) complexes are supported by 2,2'-bipyridine N-oxide (O-bpy) and one of several isocyanides as the cyclometalated and ancillary ligands, respectively. These new Pt(II) complexes undergo oxidative addition with MeI to give the corresponding trans-Pt(IV) complexes.... 

    Micromechanical modeling of rate-dependent behavior of Connective tissues

    , Article Journal of Theoretical Biology ; Volume 416 , 2017 , Pages 119-128 ; 00225193 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Academic Press  2017
    Abstract
    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were...