Loading...
Search for: lagrangian
0.006 seconds
Total 151 records

    Homogenization of maximal monotone vector fields via selfdual variational calculus

    , Article Advanced Nonlinear Studies ; Volume 11, Issue 2 , Jan , 2011 , Pages 323-360 ; 15361365 (ISSN) Ghoussoub, N ; Moameni, A ; Sáiz, R. Z ; Sharif University of Technology
    2011
    Abstract
    We use the theory of selfdual Lagrangians to give a variational approach to the homogenization of equations in divergence form, that are driven by a periodic family of maximal monotone vector fields. The approach has the advantage of using Γ-convergence methods for corresponding functionals just as in the classical case of convex potentials, as opposed to the graph convergence methods used in the absence of potentials. A new variational formulation for the homogenized equation is also given  

    An arbitrary lagrangian-eulerian technique for plasticity of pressure-sensitive material with reference to powder forming processes

    , Article 9th International Conference on Technology of Plasticity, ICTP 2008, Gyeongju, 7 September 2008 through 11 September 2008 ; 2008 , Pages 1825-1830 Khoei, A. R ; Anahid, M ; Dormohammadi, H ; Shahim, K ; Sharif University of Technology
    Hanrimwon Publishing Co  2008
    Abstract
    In this paper, an application of arbitrary Lagrangian-Eulerian method is presented in plasticity behavior of pressure-sensitive material, with special reference to large deformation analysis of powder compaction process. In ALE technique, the convective term is used to reflect the relative motion between the mesh and the material. The convection term is neglected in the material phase, which is identical to a time-step in a standard Lagrangian analysis. The stresses and plastic internal variables are converted to account the relative mesh-material motion in the convection phase. The ALE formulation is then performed within the framework of a three-invariant cap plasticity model in order to... 

    Special Lagrangian sub-manifolds and super-symmetry

    , Article International Journal of Geometric Methods in Modern Physics ; Volume 10, Issue 7 , 2013 ; 02198878 (ISSN) Bahraini, A ; Sharif University of Technology
    2013
    Abstract
    Special Lagrangian sub-manifolds of Calabi-Yau (CY) 3-folds are used to describe membrane instanton solutions of N = 1, 11-dimensional super-gravity theories. Super-symmetry is the essential ingredient that relates super-gravity branes to special Lagrangian sub-manifolds [K. Becker, M. Becker and A. Strominger, Fivebranes, membranes and non-perturbative string theory, Nucl. Phys. B 456(1-2) (1995) 135-152]. In this note we would like to explain this relation, more explicitly and with more details than in the current literature  

    Control of the cedra brachiation robot using combination of controlled lagrangians method and particle swarm optimization algorithm

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 44, Issue 1 , 2020 , Pages 11-21 Tashakori, S ; Vossoughi, G ; Azadi Yazdi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    This paper studies the control of a brachiating robot imitating the locomotion of a long armed ape. The robot has two revolute joints, but only one of them is actuated. In this paper, after deriving dynamic model of the robot, the Controlled Lagrangians (CL) method is used to design a controller for point to point locomotion. The CL method involves satisfying a number of equations called matching conditions. The matching conditions are derived using the extended λ-method in the form of a set of partial differential equations (PDEs). Solving the PDEs, a class of controllers is found that satisfies the matching conditions. The fittest controller in the class of controllers is then chosen by... 

    Aeroelastic analysis of guided hypersonic launch vehicles

    , Article Scientia Iranica ; Volume 11, Issue 1-2 , 2004 , Pages 26-36 ; 10263098 (ISSN) Pourtakdoust, S. H ; Assadian, N ; Sharif University of Technology
    Sharif University of Technology  2004
    Abstract
    This study is concerned with the general motion of a guided flexible launch vehicle idealized as a non-uniform beam under continuous thrust action. The governing equations of motion are derived following the Lagrangian approach and generalized coordinates. The rigid motion consists of the conventional vehicle velocities (rotational and translative), whereas the elastic motion, introduced through modal substitution, represents the vehicle local lateral and transverse displacements relative to a mean body axis system. A complete simulation routine has been developed, which allows for investigation of the influence of variuos vibrational forcing functions, local stiffness changes and the... 

    Geometric control of the brachiation robot using controlled Lagrangians method

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 17 December , 2014 , Pages 706-710 Tashakori, S ; Vossoughi, G ; Yazdi, E. A ; Sharif University of Technology
    Abstract
    This paper studies a brachiation robot that is a long armed locomotion similar to apes. The robot has 2 revolute joints but only one of them is actuated. In this paper, after deriving dynamic model of the robot the Controlled Lagrangian (CL) method is used for stabilization. The matching conditions satisfied for the controller are derived and the extended λ-method is used to solve PDE's involved in the method of controlled lagrangian. Satisfactory controller's gains are chosen by PSO algorithm. Finally, feasibility of the developed controller is investigated by numerical simulations  

    Design An Efficient Method for Solving Integer Programming by Lagrangian Relaxation

    , M.Sc. Thesis Sharif University of Technology Zare, Mahdi (Author) ; Eshghi, Kourosh (Supervisor)
    Abstract
    The subgradient method is one of the most favoriate methods to solve discrete optimization problems. The Easy Implementation and flexibility enbles us to solve a vast types of complicated combinatorial optimization problems. However, the algorithm can be improved by adjusting its parameters and steps.In present research, we present a heuristic structure to modify and improve the algorithm. Then, the proposed algorithm has tested on special classes of discrete optimization problems such as Generealized Assignment and Uncapacitated Warehouse location problems. The results show that the proposed algorithm can improve the efficiency of the classic form of subgradient method.The three main... 

    Modeling of Large Deformation Frictional Contact Using the Augmented-Lagrange Method

    , M.Sc. Thesis Sharif University of Technology Taheri Mousavi, Mohaddese (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The numerical modeling of engineering contact problems is one of the most difficult and demanding tasks in computational mechanics. Frictional contact can be observed in many problems; such as: crack propagation, metal forming operation, drilling pile etc. In metal forming operations the required shape changes are obtained by either of forming process, such as pressing, hammering, rolling or extruding the material between the tools which are much stiffer than shaped material. Because of large difference between deformability of the tool and material, relative movements occur in contact area. These relative movements produce the normal and tangential stresses, which have important role on... 

    Modeling of powder forming processes; application of a three-invariant cap plasticity and an enriched arbitrary lagrangian-eulerian fe method

    , Article Advanced Computational Materials Modeling: From Classical to Multiâ-Scale Techniques ; NOV , 2010 , Pages 257-299 ; 9783527324798 (ISBN) Khoei, A. R ; Sharif University of Technology
    Wiley-VCH  2010

    New point-to-face contact algorithm for 3-D contact problems using the augmented Lagrangian method in 3-D DDA

    , Article Geomechanics and Geoengineering ; Volume 4, Issue 3 , 2009 , Pages 221-236 ; 17486025 (ISSN) Beyabanaki, S. A. R ; Mikola, R. G ; Biabanaki, S. O.R ; Mohammadi, S ; Sharif University of Technology
    Abstract
    This paper presents a new point-to-face contact algorithm for contacts between two polyhedrons with planar boundaries. A new discrete numerical method called three-dimensional discontinuous deformation analysis (3-D DDA) is used and formulations of normal contact submatrices based on the proposed algorithm are derived. The presented algorithm is a simple and efficient method and it can be easily coded into a computer program. This approach does not need to use an iterative algorithm in each time step to obtain the contact plane, unlike the ‘Common-Plane’ method applied in the existing 3-D DDA. In the present 3-D DDA method, block contact constraints are enforced using the penalty method.... 

    Robust optimization of risk-aware, resilient and sustainable closed-loop supply chain network design with Lagrange relaxation and fix-and-optimize

    , Article International Journal of Logistics Research and Applications ; 2021 ; 13675567 (ISSN) Lotfi, R ; Sheikhi, Z ; Amra, M ; AliBakhshi, M ; Weber, G. W ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This study explores a Robust, Risk-aware, Resilient, and Sustainable Closed-Loop Supply Chain Network Design (3RSCLSCND) to tackle demand fluctuation like COVID-19 pandemic. A two-stage robust stochastic multiobjective programming model serves to express the proposed problems in formulae. The objective functions include minimising costs, CO2 emissions, energy consumption, and maximising employment by applying Conditional Value at Risk (CVaR) to achieve reliability through risk reduction. The Entropic Value at Risk (EVaR) and Minimax method are used to compare with the proposed model. We utilise the Lp-Metric method to solve the multiobjective problem. Since this model is complex, the... 

    Modeling of moving boundaries in large plasticity deformations via an enriched arbitrary Lagrangian-Eulerian FE method

    , Article Scientia Iranica ; Volume 17, Issue 2 A , 2010 , Pages 141-160 ; 10263098 (ISSN) Anahid, M ; Khoei, A. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, a new computational technique is presented for the modeling of moving boundaries in large plastic deformations based on an enriched arbitrary Lagrangian-Eulerian finite element method. An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to capture the advantages of both Lagrangian and Eulerian methods and alleviate the drawbacks of mesh distortion in Lagrangian formulation. An enriched finite element method is implemented based on the extended FEM technique to capture the arbitrary interfaces independent of element boundaries. The process is accomplished by performing a splitting operator to separate the material (Lagrangian) phase from the convective (Eulerian)... 

    A two-echelon single-period inventory control problem under budget constraint

    , Article International Journal of Advanced Manufacturing Technology ; Volume 56, Issue 9-12 , 2011 , Pages 1205-1214 ; 02683768 (ISSN) Pasandideh, S. H ; Niaki, S. T. A ; Rashidi, R ; Sharif University of Technology
    Abstract
    This paper points out an application of the "two-echelon single-period product (newsboy) problem," in which within a limited budget the final product and the raw materials are purchased before the start of the selling period and depending on the demand, the raw materials may be transformed into the finished product during the period. The objective of this problem is to find the order quantities of both the raw materials and the final product at the beginning of the period such that the expected profit is maximized. A new model is first developed for this problem and then a Lagrangian method is proposed to solve it. Finally, a numerical example is given to illustrate the application of the... 

    A complete treatment of thermo-mechanical ale analysis; Part I: Formulation

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 2 , 2010 , Pages 135-148 ; 10286284 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Farrahi, G. H ; Sharif University of Technology
    2010
    Abstract
    Arbitrary Lagrangian Eulerian (ALE) finite element method is extensively used for numerical simulation of solid mechanics problem. The versatility of the mesh in ALE approach makes it particularly effective and efficient in solving large deformation problems. In this work, a complete treatment of fully coupled ALE formulation is presented incorporating inertial, rate and thermal effects. The formulation may be used in conjunction with thermo-elasto-viscoplactic material models. A consistent and efficient tangent operator is developed in closed form to handle stress integration. The applications of this formulation are given in the second part of this paper  

    3D modeling of large elasto-plastic deformation via the extended finite element method

    , Article 9th International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS IX, Barcelona, 5 September 2007 through 7 September 2007 ; Issue PART 2 , 2007 , Pages 894-897 ; 9788496736290 (ISBN) Khoei, A. R ; Biabanaki, S. O. R ; Anahid, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, the extended finite element method is presented for large elasto-plastic deformation in 3D solid mechanics problems. The X-FEM computational algorithm is presented in the framework of Lagrangian description in order to model the arbitrary discontinuities in large deformations. The discontinuity between two bodies is modeled by using the X-FEM technique and applying a modified level set enrichment function. In order to simulate the nonlinear behavior of materials, the Lagrangian plasticity formulation is coupled with the X-FEM technique. Finally, numerical example is analyzed to demonstrate the efficiency of the X-FEM technique in large plasticity deformations. © CIMNE 2007  

    Elasto-plastic finite element simulation of asymmetrical plate rolling using an ALE approach

    , Article Journal of Materials Processing Technology ; Volume 177, Issue 1-3 , 2006 , Pages 525-529 ; 09240136 (ISSN) Farhat-Nia, F ; Salimi, M ; Movahhedy, M. R ; Sharif University of Technology
    2006
    Abstract
    Asymmetric sheet rolling is simulated by using an elastic-plastic arbitrary Lagrangian-Eulerian (ALE) finite element method. The ALE finite element approach easily predicts the curvature development due to inequality in work roll/plate surface finish (interface friction) and speed mismatch. An isotropic work hardening material is assumed. Reasonable agreements were found between the numerical method and the experimental results. © 2006 Elsevier B.V. All rights reserved  

    An Implementation of Newton-Like Methods on Nonlinearly Constrained Network

    , M.Sc. Thesis Sharif University of Technology Shaeiri, Mahdi (Author) ; Mahdavi Amiri, Nezameddin (Supervisor)
    Abstract
    In this thesis, arranged by [6], the multiplier method is used to solve the network problems with nonlinear constraints and the Newton-like methods are used for updating the required parameters. This method, recently proposed in the literature, is based on solving a sequence of nonlinear optimization subproblems, dependent on the main problem, such that sequence of solutions of these problems converge to the solution of the main problem. In fact, to obtain an acceptable approximation of the main solution, it is needed to solve just a finite number of nonlinear subproblems. The main idea of the multiplier methods is based on eliminating some constraints and adding a penalty term to the... 

    Optimization of Valgus Anatomy Angle of the Fractured Hip for Overcoming the Bone Unhealing Due to Increased Shear Stress at the Fixation Site, Considering Patient Bone Characteristics

    , M.Sc. Thesis Sharif University of Technology Rastegar Talzali, Sajjad (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    In femoral neck fracture when the non-union happens in the fractured zone, valgus osteotomy is a surgery method to overcome bone non-union. In this method, a wedge osteotomy-with specific depth and angle- at the femoral neck is created. By changing the bone angle at the fracture site and the angle of the wedge osteotomy it is desired to convert the shear stress to the normal stress. Clinically it is believed that this would facilitate bone healing and prevent bone fracture. This surgery method also changes the anatomy of muscles due to changing hip anatomy, joint reaction force , and it’s direction. This procedure while minimizing shear stress it also reduces the blood supply to the area and... 

    Optimum Counterweight Balancing of a (3-RPS)Robot in Dynamic Motion

    , M.Sc. Thesis Sharif University of Technology Javaherchi, Hossein (Author) ; Ghaemi Osgouie, Kambiz (Supervisor) ; Khayyat, Amir Ali Akbar (Co-Advisor)
    Abstract
    In this thesis, Optimum Counterweight and Spring Balancing of a novel kind of mechanism called a general 3-RPS parallel robot in Dynamic Motion are investigated. Balancing is explained as the set of configurations on robot inertial and dimensional parameters which, when convinced, certify that the weight of the links produce less force at the actuators for any configuration of the robot, under dynamic or static behaviors. In the references, different procedures have been suggested for balancing that consisted of counterweights, springs, and other auxiliary equipments. Study represents the essential information for having optimum spring and counterweight balancing in a new (3RPS) robot using... 

    Warehouses Location Model with Capacity Constraint

    , M.Sc. Thesis Sharif University of Technology Pishbin, Payam (Author) ; Kianfar, Farhad (Supervisor)
    Abstract
    In this thesis, an inventory- location model considering capacity constraints and coverage radius is described in which the capacity is determined based on the maximum accumulation inventory. This model, through minimizing the sum of the fixed facility location costs, transportation costs and safety stock and working inventory costs, concurrently, determines warehouse location, assignment of retailers to warehouses, shipment sizes from the plant to warehouses, working inventory and safety stock levels at the warehouses. This problem can be formulated as a nonlinear mixed integer program in which the objective function is neither concave nor convex. Lagrangian relaxation is incorporated for...