Loading...
Search for: land-vehicles
0.008 seconds

    Implementation of an optimal control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 327-334 ; 10263098 (ISSN) Taghavipour, A ; Foumani, M. S ; Boroushaki, M ; Sharif University of Technology
    2012
    Abstract
    A control strategy on a hybrid vehicle can be implemented through different methods. In this paper, the Cerebellar Model Articulation Controller (CMAC) and Radial Basis Function (RBF) neural networks were applied to develop an optimal control strategy for a split parallel hydraulic hybrid vehicle. These networks contain a nonlinear mapping, and, also, the fast learning procedure has made them desirable for online control. The RBF network was constructed with the use of the K-mean clustering method, and the CMAC network was investigated for different association factors. Results show that the binary CMAC has better performance over the RBF network. Also, the hybridization of the vehicle... 

    Toward design and fabrication of wind-driven vehicles: Procedure to optimize the threshold of driving forces

    , Article Applied Mathematical Modelling ; Volume 37, Issue 1-2 , 2013 , Pages 50-61 ; 0307904X (ISSN) Mirzaei, P. A ; Rad, M ; Sharif University of Technology
    2013
    Abstract
    Wind energy has been continuously considered as a green, available, and economical alternative source of energy. For centuries, the transformed wind energy to drag-force has been used for transportation in watercrafts. With improvement of aerodynamics, the airfoil was invented to create and use a higher magnitude aerodynamic force, lift-force, in order to elevate airplanes. Later, the lift-force was horizontally applied as the thrust force in land/water wind-crafts. Whereas in airplanes horizontal airfoils (wing) create a vertical lift-force, installed vertical airfoils (wing-sail) produce a horizontal lift-force in wind-crafts. Therefore, this force can be used as thrust (driving) force in...