Loading...
Search for: langmuir-isotherm
0.01 seconds

    Adsorption of xylene isomers on Na-BETA zeolite: Equilibrium in batch adsorber

    , Article Microporous and Mesoporous Materials ; Volume 172 , 2013 , Pages 136-140 ; 13871811 (ISSN) Molaei Dehkordi, A ; Khademi, M ; Sharif University of Technology
    2013
    Abstract
    In this article, adsorption of p-xylene, m-xylene, o-xylene, and ethylbenzene on Na-BETA type zeolite in liquid phase at 15, 25, and 35 °C has been studied and the single adsorption isotherms have been obtained and reported. The Langmuir isotherm model was used to describe the experimental adsorption isotherm data. It was found that p-xylene is more strongly adsorbed component followed by ethylbenzene, m-xylene and o-xylene. This means that this adsorbent is selective for p-xylene. Using Langmuir isotherm model, the saturation adsorption capacities of the adsorbent were obtained as follows 143 mg/g for p-xylene, 105 mg/g for ethylbenzene, 83 mg/g for m-xylene, and 68 mg/g for o-xylene at 25... 

    Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution

    , Article RSC Advances ; Volume 5, Issue 41 , Mar , 2015 , Pages 32263-32271 ; 20462069 (ISSN) Pourjavadi, A ; Nazari, M ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Magnetic nanocomposite hydrogels containing different amounts of graphene oxide were synthesized and characterized by FTIR, XRD, TGA, SEM, TEM, VSM and UV-vis spectroscopy. The prepared hydrogels were used as adsorbents for removal of a cationic dye, crystal violet, from water. The kinetics and isotherm of adsorption and the effect of different experimental conditions such as graphene oxide content, pH of the solution, contact time, adsorbent dosage and initial dye concentration on adsorption capacity were then investigated. Parameters related to kinetics and isotherm models were calculated and discussed. It was found that adsorption is well-described by pseudo-second-order kinetics and... 

    Experimental and theoretical study on BTEX removal from aqueous solution of diethanolamine using activated carbon adsorption

    , Article Journal of Natural Gas Science and Engineering ; Volume 22 , 2015 , Pages 618-624 ; 18755100 (ISSN) Aleghafouri, A ; Hasanzadeh, N ; Mahdyarfar, M ; SeifKordi, A ; Mahdavi, S. M ; Zoghi, A. T ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Activated carbon beds are extensively used in sweetening units of natural gas refineries for the purification of contaminated amine solutions. Correlation of experimental adsorption data using an analytical isotherm equation is need to design an accurate activated carbon bed. In the present study, the adsorption of BTEX from Diethanolamine (DEA) solution by commercial and granular activated carbon (AC) were performed. The Langmuir, Freundlich and Sips isotherm models were used to describe the equilibrium data. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results show that the Freundlich... 

    A new functionalized magnetic nanocomposite of poly(methylacrylate) for the efficient removal of anionic dyes from aqueous media

    , Article RSC Advances ; Volume 6, Issue 10 , 2016 , Pages 7982-7989 ; 20462069 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Nasseri, S. A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A new magnetic nano-adsorbent was synthesized via the radical polymerization of methyl acrylate on modified Fe3O4 nanoparticles, followed by its functionalization by amidation of the methyl ester groups using pentaethylenehexamine, to create active adsorption sites for removing anionic dyes from aqueous media. Physicochemical properties of the adsorbent were then characterized by SEM, TEM, XRD, FTIR, TGA and CHN analysis. The prepared nanocomposite was used as adsorbent for the removal of anionic dyes, naphthol green B and chromeazurol S, from aqueous solution and assessed in view of the kinetics and isotherm adsorption, and the effect of solution pH, contact time and initial dye... 

    Nanodiamond-filled chitosan as an efficient adsorbent for anionic dye removal from aqueous solutions

    , Article Journal of Environmental Chemical Engineering ; Volume 6, Issue 2 , 2018 , Pages 3283-3294 ; 22133437 (ISSN) Raeiszadeh, M ; Hakimian, A ; Shojaei, A ; Molavi, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A series of novel chitosan/nanodiamond (CTS/ND) composites containing NDs with variable surface carboxyl groups and various concentrations were prepared using solution casting method. Powdery CTS/ND composites were employed as the adsorbent of a model anionic dye (methyl orange, MO). Experimental results showed that the incorporation of NDs with high carboxylic content (ND-H) in to CTS increased substantially the maximum adsorption capacity of neat CTS from 167 mg/g to 454 mg/g. The remarkable adsorption capacity of dye on CTS/ND composites was associated to the oxygen-containing groups on the outer surface of NDs which would be beneficial to interact with the dye molecules through hydrogen... 

    Efficient removal of cationic dyes using a new magnetic nanocomposite based on starch-g-poly(vinylalcohol) and functionalized with sulfate groups

    , Article RSC Advances ; Volume 6, Issue 44 , 2016 , Pages 38042-38051 ; 20462069 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Tavakoli, A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A magnetic nanoparticle@starch-g-poly(vinyl sulfate) nanocomposite (MNP@St-g-PVS) as a new magnetic nano-adsorbent has been prepared based on graft copolymerization of vinyl acetate onto starch in the presence of magnetic nanoparticles, where the acetate groups were converted to hydroxyl groups followed by the sulfation of the hydroxyl groups using chlorosulfonic acid. Characterization of this magnetic nanocomposite was carried out by FTIR, TGA, XRD, VSM, SEM, TEM and elemental analysis. The resulting nanocomposite was used as an adsorbent for the removal of typical cationic dyes, methylene blue (MB) and malachite green (MG), from aqueous solutions. All experimental parameters that can... 

    Ultrafast and efficient removal of cationic dyes using a magnetic nanocomposite based on functionalized cross-linked poly(methylacrylate)

    , Article Reactive and Functional Polymers ; Volume 105 , 2016 , Pages 95-102 ; 13815148 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this study, a new magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with ethylenediamine and sodium chloroacetate. The generated magnetic nanocomposite was characterized by FT-IR, TEM, SEM, TGA, VSM, XRD and elemental analysis. Its key role as an adsorbent for the removal of typical cationic dyes, methyl violet and malachite green was investigated in terms of pH, contact time and initial dye concentration. The resulted adsorbent displays excellent adsorption capacities for cationic dyes which are more effective than most of the adsorbents reported so far.... 

    Amino functionalized hierarchically produced porous polyacrylamide microspheres for the removal of chromium(VI) from aqueous solution

    , Article Journal of Porous Materials ; Volume 24, Issue 6 , 2017 , Pages 1705-1715 ; 13802224 (ISSN) Karimi, M ; Nematollahzadeh, A ; Shojaei, A ; Sharif University of Technology
    Abstract
    Porous silica microspheres were used as hard template to produce porous polyacrylamide microspheres. The microspheres were modified with ethylenediamine and used for the removal of hexavalent chromium [Cr(VI)] from aqueous solution. Scanning electron microscopy, thermogravimetry analysis, and Fourier transform infrared spectroscopy were utilized to characterize the adsorbent. Adsorption of Cr(VI) was conducted in batch and dynamic modes, and effect of various parameters including solution pH, adsorbent dose, initial concentration of Cr(VI) and agitation time on the adsorption process was studied. The optimum pH for the maximum adsorption (124 mg Cr(VI)/g dry polymer) was found to be 3.... 

    Removal of Cu 2+ , Cd 2+ and Ni 2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane

    , Article Carbohydrate Polymers ; Volume 210 , 2019 , Pages 264-273 ; 01448617 (ISSN) Sahebjamee, N ; Soltanieh, M ; Mousavi, S. M ; Heydarinasab, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The chitosan/poly vinyl alcohol membrane was modified by addition of some amine group to the membrane structure utilizing polyethyleneimine (PEI) in order to increase ionic metals adsorbent properties of the membrane. The removal percentage of the modified membranes was compared with the pristine membrane and activated carbon as common adsorbents. The membranes were characterized by FTIR, SEM, swelling degree and porosity measurement. The removal percentage of the membrane containing 0.5 wt.% PEI was more than 60% higher than the activated carbon and more than 40% higher than the pristine membrane. The modified membrane showed excellent adsorption capacity of 112.13, 86.08, and 75.5 mg/g for... 

    Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems

    , Article Microporous and Mesoporous Materials ; Volume 273 , 2019 , Pages 177-188 ; 13871811 (ISSN) Abdi, J ; Mahmoodi, N. M ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Herein, magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) was synthesized. The ultrasound-assisted simultaneous adsorption of Malachite Green (MG) and Methyl Orange (MO) as cationic and anionic dyes onto ZIF-8@SiO2@MnFe2O4 magnetic microporous nanocomposite (MMNC) as a novel adsorbent was investigated. The FTIR, FESEM, TEM, XRD, BET and VSM were used to characterize the prepared adsorbent. The analysis of dyes concentration in a binary mixture was investigated using zero-order and first order derivative spectrophotometry. The individual effects and possible interactions between the various parameters were investigated by response surface methodology (RSM). The optimized... 

    Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study

    , Article Journal of Molecular Liquids ; Volume 318 , 2020 Mirzaee Valadi, F ; Ekramipooya, A ; Gholami, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    La-MOF-NH2@Fe3O4 (magnetic-MOF) was used as an efficient, ultrafast, and selective adsorbent for the separation of Congo Red (CR) with 92.02% removal after 2 min. The magnetic-MOF was identified by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area, Zeta Potential analysis, analysis of the magnetic hysteresis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). Kinetics, isotherms, the effect of pH, thermodynamic, and selectivity of CR adsorption were investigated. The results confirmed that the adsorption kinetics complied with the pseudo-second-order model. The... 

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective... 

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,...