Loading...
Search for: large-scale-wind-turbines
0.006 seconds

    Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 8, Issue 3 , 2021 , Pages 690-700 ; 23299266 (ISSN) Abrazeh, S ; Parvaresh, A ; Mohseni, S. R ; Jahanshahi Zeitouni, M ; Gheisarnejad, M ; Khooban, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    As wind energy is becoming one of the fastest-growing renewable energy resources, controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties. The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification. For this purpose, a novel model-independent nonsingular terminal sliding-mode control (MINTSMC) using the basic principles of the ultra-local model (ULM) and combined with the single input interval type-2 fuzzy logic control (SIT2-FLC) is developed for non-linear wind turbine pitch angle control. In the suggested control framework, the... 

    Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 8, Issue 3 , 2021 , Pages 690-700 ; 23299266 (ISSN) Abrazeh, S ; Parvaresh, A ; Mohseni, S. R ; Zeitouni, M. J ; Gheisarnejad, M ; Khooban, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    As wind energy is becoming one of the fastest-growing renewable energy resources, controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties. The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification. For this purpose, a novel model-independent nonsingular terminal sliding-mode control (MINTSMC) using the basic principles of the ultra-local model (ULM) and combined with the single input interval type-2 fuzzy logic control (SIT2-FLC) is developed for non-linear wind turbine pitch angle control. In the suggested control framework, the... 

    Nonlinear pitch control of a large scale wind turbine by considering aerodynamic behavior of wind

    , Article 9th International Conference on Modern Circuits and Systems Technologies, MOCAST 2020, 7 September 2020 through 9 September 2020 ; 2020 Golnary, F ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this research, nonlinear sliding mode pitch control of a wind turbine has been investigated by considering aerodynamic nonlinearities. For modeling aerodynamic interaction between the wind and the drive-train system, blade element momentum theory is used by considering Prandtl's tip loss factor and Glaurt correction. Finally, the two-degrees of freedom model of the drive-train is extracted and the sliding mode approach is examined for regulating the output power into its nominal value by controlling the pitch angle. The implementation of the above proposed control law in its related electronic circuit of the wind turbine will be considered as the future stage of the current research. ©... 

    Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation

    , Article Renewable Energy ; Volume 127 , 2018 , Pages 495-508 ; 09601481 (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Abstract
    In this paper, dynamic modelling and control of WindPACT 1.5 MW wind turbine in Region 2 for extracting the maximum energy from wind is investigated (where the wind velocity is greater than ‘cut in’ and below ‘rated’ wind speeds). In this region, the generator torque must regulate the rotor speed in its optimal value while the blade pitch angle is considered constant in its optimal value. To achieve a more accurate model, wind turbine is modeled as an electromechanical system with two masses dynamics. A new method based on adaptive neuro fuzzy inference system (ANFIS) is considered for wind speed estimation; where rotor speed, output power and pitch angle are inputs of such system and... 

    Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes

    , Article Energy ; Volume 145 , 2018 , Pages 261-275 ; 03605442 (ISSN) Ebrahimi, A ; Sekandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, the aeroelastic analysis of a large scale wind turbine rotor is performed with the aim of studying transient performance of turbine in extreme wind conditions, such as wind gusts and rapid yaw changes. The effect of the presence and/or lack of blade pitch control system on output power, rotor thrust, and blade deformation in sudden change of wind speed are investigated. The NREL 5 MW offshore wind turbine is used as the baseline case. In this regard, the modal approach is implemented for modeling the flexible blade structure with tension, bending and torsion degrees of freedom. The unsteady vortex lattice method is employed to obtain the aerodynamic loads. Moreover, the...