Loading...
Search for: laser-resonators
0.005 seconds

    Fourier modal method formulation for fast analysis of two-dimensional periodic arrays of graphene

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 5 , 2014 , pp. 987-993 ; ISSN: 07403224 Nekuee, S. A. H ; Khavasi, A ; Akbari, M ; Sharif University of Technology
    Abstract
    Recently, an approximate boundary condition [Opt. Lett. 38, 3009 (2013)] was proposed for fast analysis of onedimensional periodic arrays of graphene ribbons by using the Fourier modal method (FMM). Correct factorization rules are applicable to this approximate boundary condition where graphene is modeled as surface conductivity. We extend this approach to obtain the optical properties of two-dimensional periodic arrays of graphene. In this work, optical absorption of graphene squares in a checkerboard pattern and graphene nanodisks in a hexagonal lattice are calculated by the proposed formalism. The achieved results are compared with the conventional FMM, in which graphene is modeled as a... 

    Regularization of jump points in applying the adaptive spatial resolution technique

    , Article Optics Communications ; Volume 284, Issue 13 , June , 2011 , Pages 3211-3215 ; 00304018 (ISSN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2011
    Abstract
    The performance of the adaptive spatial resolution technique is improved by making the resolution function of the coordinate transformation as smooth as possible. To this end, the smoothness of the resolution function is probed and a quantitative criterion is proposed to make the jump points; which were conventionally equidistant from each other, regularized. The here-proposed regularization is applied to two different recent formulations and its effects on the overall convergence rate and on the presence of numerical artifacts in analysis of highly conducting gratings are studied. Dielectric and metallic gratings at optical and microwave frequencies are considered and the helpfulness of the... 

    A regularized adaptive spatial resolution technique for fast and accurate analysis of metal–dielectric crossed gratings

    , Article Journal of Computational Electronics ; Volume 18, Issue 2 , 2019 , Pages 689-695 ; 15698025 (ISSN) Nekuee, S. A. H ; Faghihifar, E ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The application of regularized jump points has been proposed [Khavasi and Mehrany in Opt Commun 284(13):3211–3215, 6] as an adaptive spatial resolution (ASR) technique to improve the convergence of the Fourier modal method (FMM) in the analysis of one-dimensional periodic structures. We extend this approach to obtain the optical response of metal–dielectric crossed gratings, two-dimensional periodic structures with a high-contrast permittivity distribution. A metallic grid and a slab of split-ring resonators are analyzed using the proposed ASR technique, and the results compared with those obtained using the conventional ASR technique and FMM. The results show that, by adequately choosing... 

    The effects of circularly polarized laser pulse on generated electron nano-bunches in oscillating mirror model

    , Article Laser and Particle Beams ; Vol. 32, Issue. 2 , June , 2014 , pp. 285-293 ; ISSN: 02630346 Shirozhan, M ; Moshkelgosha, M ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    The effects of the polarized incident laser pulse on the electrons of the plasma surface and on the reflected pulse in the relativistic laser-plasma interaction is investigated. Based on the relativistic oscillating mirror and totally reflecting oscillating mirror (TROM) regimes, the interaction of the intense polarized laser pulses with over-dense plasma is considered. Based on the effect of ponderomotive force on the characteristic of generated electron nano-bunches, considerable increasing in the localization and charges of nano-bunches are realized. It is found that the circularly polarized laser pulse have N e/N cr of 1500 which is almost two and seven times more than the amounts for... 

    Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons

    , Article Optics Letters ; Volume 38, Issue 16 , 2013 , Pages 3009-3012 ; 01469592 (ISSN) Khavasi, A ; Sharif University of Technology
    2013
    Abstract
    Li's Fourier factorization rules [J. Opt. Soc. Am. A 13, 1870 (1996)] should be applied to achieve a fast convergence rate in the analysis of diffraction gratings with the Fourier modal method. I show, however, that Li's inverse rule cannot be applied for periodic patterns of graphene when the conventional boundary condition is used. I derive an approximate boundary condition in which a nonzero but sufficiently small height is assumed for the boundary. The proposed boundary condition enables us to apply the inverse rule, leading to a significantly improved convergence rate. A periodic array of graphene ribbons is in fact a special type of finite-conductivity strip grating, and thus the... 

    Development of a non-invasive micron sized blood glucose sensor based on microsphere stimulated raman spectroscopy

    , Article Sensors and Transducers ; Volume 147, Issue 12 , 2012 , Pages 129-142 ; 17265479 (ISSN) Bahrampour, A ; Jahangiri, N ; Taraz, M ; Sharif University of Technology
    2012
    Abstract
    We proposed a new method for Non-invasive measuring of blood glucose levels by using micro sphere Stimulated Raman scattering. We show that this method can be used to measure biological glucose levels with low power lasers. The field enhancement due to the resonance condition of high quality factor microsphere causes to reduce stimulated Raman scattering thresholds of its surrounding media (glucose) and hence observing stimulated Raman scattering with low power. The results from theoretical studies indicate that the stimulated Raman signal amplitude levels produced from the very low Glucose concentrations. By measuring the changes of the signal intensity in output of fiber, we can determine...