Loading...
Search for: lateral-force-microscopy
0.011 seconds

    RF reactive co-sputtered Au-Ag alloy nanoparticles in SiO 2 thin films

    , Article Applied Surface Science ; Volume 253, Issue 18 , 2007 , Pages 7438-7442 ; 01694332 (ISSN) Sangpour, P ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2007
    Abstract
    We have studied formation of Au-Ag alloy nanoparticles in sputtered SiO 2 thin films. Silica thin films containing Au-Ag nanoparticles were deposited on quartz substrates using rf reactive magnetron co-sputtering technique. The films heat-treated in reducing Ar + H 2 atmosphere at different temperatures. They were analyzed by using UV-vis spectrophotometry, atomic force microscopy and X-ray photoelectron spectroscopy (XPS) methods for their optical, surface morphological as well as structural and chemical properties. The optical absorption of the Au-Ag alloy nanoparticles illustrated one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag... 

    The effect of Au/Ag ratios on surface composition and optical properties of co-sputtered alloy nanoparticles in Au-Ag:SiO2 thin films

    , Article Journal of Alloys and Compounds ; Volume 486, Issue 1-2 , 2009 , Pages 22-28 ; 09258388 (ISSN) Sangpour, P ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Gold-silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV-visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au-Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing...