Loading...
Search for: leading-edge-vortices
0.005 seconds

    Comparative numerical analysis of the flow pattern and performance of a foil in flapping and undulating oscillations

    , Article Journal of Marine Science and Technology (Japan) ; Volume 20, Issue 2 , June , 2015 , Pages 257-277 ; 09484280 (ISSN) Abbaspour, M ; Ebrahimi, M ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Nature presents a variety of propulsion, maneuvering, and stabilization mechanisms which can be inspired to design and construction of manmade vehicles and the devices involved in them, such as stabilizers or control surfaces. This study aims to elucidate and compare the propulsive vortical signature and performance of a foil in two important natural mechanisms: flapping and undulation. Navier–Stokes equations are solved in an ALE framework domain containing a 2D NACA 0012 foil moving with prescribed kinematics. All simulations are carried out using a pressure-based finite volume method solver. The results of time-averaged inline force versus Strouhal number (St) show that in a given... 

    Canard flow improvement in a split canard configuration

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 6 , 2015 , Pages 1076-1087 ; 09544100 (ISSN) Davari, A. R ; Askari, F ; Soltani, M. R ; Sharif University of Technology
    Abstract
    Extensive low-speed wind-tunnel tests are performed to study the flow field structure over a dual-surface canard, known as split canard, in comparison to the conventional configurations. Surface pressure for both steady deflections and unsteady oscillations of the canard are measured and compared for both canard-alone and split-canard cases. The split canard shows a superior advantage at high angles of attack, where a delay in the vortex breakdown phenomena on the canard surface is observed. For the split-canard configuration, the downwash of the front canard reduces the effective angle of attack at the inboard section of the rear element which postpones formation of the leading-edge vortex.... 

    A comparative numerical study on the performances and vortical patterns of two bioinspired oscillatory mechanisms: Undulating and pure heaving

    , Article Applied Bionics and Biomechanics ; Volume 2015 , 2015 ; 11762322 (ISSN) Ebrahimi, M ; Abbaspour, M ; Sharif University of Technology
    IOS Press  2015
    Abstract
    The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces.This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian- Eulerian (ALE) framework domain containing a 2D NACA0012 foil... 

    Effects of canard position on wing surface pressure

    , Article Scientia Iranica ; Volume 17, Issue 2 B , 2010 , Pages 136-145 ; 10263098 (ISSN) Soltani, M. R ; Askari, F ; Davari, A. R ; Nayebzadeh, A ; Sharif University of Technology
    2010
    Abstract
    A series of wind tunnel tests were performed to study the effects of a canard and its position on the downstream flowfield over the wing surface. The wing surface pressure was measured for both canard-off and canard-on configurations. In addition, the canard position effects on the wing were investigated at different angles of attack. The canard was installed at three vertical positions and at two different horizontal distances from the wing apex. The results show a remarkable increase in the wing suction peak for the canard-on configurations. At low to moderate angles of attack, among the various configurations examined in the present experiments, the mid-canard configuration developed a... 

    Experimental investigation of the leading edge vortex formation on unsteady boundary layer

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 232, Issue 18 , 2018 , Pages 3263-3280 ; 09544062 (ISSN) Davari, A. R ; Abdollahi, R ; Azimizadeh, E ; Sharif University of Technology
    Abstract
    Extensive experimental studies have been performed to investigate the unsteady boundary layer behavior over a plunging wind turbine blade section. The studies have been undertaken at various combinations of reduced frequencies, Reynolds numbers, and locations. A boundary layer rake has been carefully manufactured and utilized for velocity measurements inside the unsteady boundary layer. The measurement has been conducted in pre-static stall conditions. The reduced frequency and free stream velocity have varied from 0.005 to 0.1, and 30 to 60 m/s, respectively. To cover all possible scenarios, the streamwise positions of measurements have been chosen to be in favorable (x/c = 0.37), almost... 

    Impact of dielectric barrier discharge plasma on the wake of a wind turbine blade section oscillating in plunge

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; 2021 ; 09576509 (ISSN) Maleki, G. H ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Effects of dielectric barrier discharge plasma have been studied on the wake velocity profiles of a section of a 660 kW wind turbine blade in plunging motion in a wind tunnel. The corresponding unsteady velocity profiles show remarkable improvement when the plasma actuators were operating and the angles of attack of the model were beyond the static stall angles of the airfoil. As a result the drag force was considerably reduced. It is further observed that the plasma-induced flow attenuates the leading edge vortices that are periodically shed into wake and diminishes the large eddies downstream. The favorable effects of the plasma augmentation are shown to occur near the uppermost and... 

    Impact of dielectric barrier discharge plasma on the wake of a wind turbine blade section oscillating in plunge

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 236, Issue 2 , 2022 , Pages 320-335 ; 09576509 (ISSN) Maleki, G. H ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Effects of dielectric barrier discharge plasma have been studied on the wake velocity profiles of a section of a 660 kW wind turbine blade in plunging motion in a wind tunnel. The corresponding unsteady velocity profiles show remarkable improvement when the plasma actuators were operating and the angles of attack of the model were beyond the static stall angles of the airfoil. As a result the drag force was considerably reduced. It is further observed that the plasma-induced flow attenuates the leading edge vortices that are periodically shed into wake and diminishes the large eddies downstream. The favorable effects of the plasma augmentation are shown to occur near the uppermost and...