Loading...
Search for: lid-driven-cavity
0.004 seconds

    Flow control in a cavity with tiny-obstacles on the walls for mixing enhancement part I: Flow physics

    , Article Journal of Applied Fluid Mechanics ; Volume 12, Issue 1 , 2019 , Pages 11-23 ; 17353572 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    Isfahan University of Technology  2019
    Abstract
    This paper seeks to make a study on flow control in two-dimensional square cavities having obstacles on their walls. The goal of using these passive controllers is to enhance mixing in an enclosed space. Lattice Boltzmann method is used to simulate the problem. Results are presented for various Reynolds numbers, 400≤Re≤4000 and different arrangements of tiny-obstacles with different heights. To give a perspective on the physics of this problem, time evolution of the flow is studied at Re= 1000. Then, the flow structure is studied for different Reynolds numbers. Findings show that the interaction of the main vortex with the tiny-obstacles inserted on the wall cavity changes the flow pattern... 

    Flow control in a cavity with tiny-obstacles on the walls for mixing enhancement part I: Flow physics

    , Article Journal of Applied Fluid Mechanics ; Volume 12, Issue 1 , 2019 , Pages 11-23 ; 17353572 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    Isfahan University of Technology  2019
    Abstract
    This paper seeks to make a study on flow control in two-dimensional square cavities having obstacles on their walls. The goal of using these passive controllers is to enhance mixing in an enclosed space. Lattice Boltzmann method is used to simulate the problem. Results are presented for various Reynolds numbers, 400≤Re≤4000 and different arrangements of tiny-obstacles with different heights. To give a perspective on the physics of this problem, time evolution of the flow is studied at Re= 1000. Then, the flow structure is studied for different Reynolds numbers. Findings show that the interaction of the main vortex with the tiny-obstacles inserted on the wall cavity changes the flow pattern... 

    An approximated solution to the 2D incompressible Navier-Stokes equations via Adomian Decomposition Method

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 7 , 2006 , Pages 878-885 ; 11092769 (ISSN) Najafi, M ; Taeibi Rahni, M ; Aavani, K ; Sharif University of Technology
    2006
    Abstract
    The Adomian Decomposition Method (ADM) for solving the highly non-linear vorticity-stream function formulation of 2D incompressible Navier-Stokes equations has been implemented. The analysis is accompanied by numerical boundary conditions. Also, numerical simulation, using finite difference method (FDM), is performed for comparison purposes. The obtained results only for few terms of the expansion are presented. Because present software such as Mathematica/Maple can not calculate many terms (for example: up to 10 terms) of solution and then ADM approach of this problem is an open problem case  

    Droplet dynamics in rotating flows

    , Article Advances in Colloid and Interface Science ; Volume 236 , 2016 , Pages 63-82 ; 00018686 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Miller, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    This paper deals with investigations of droplet dynamics in rotating flows. In many previous studies droplet dynamics was analyzed in simple unidirectional flows. To fill this gap, the focus of this study is an overview on investigations of droplet dynamics in a complex rotating flow. A Lattice Boltzmann Method with high potential in simulation of two-phase unsteady flows is applied to simulate the physics of the problem in a lid-driven cavity. In spite of its simple geometry, there is a complex rotating flow field containing different vortices and shear regions. The Reynolds number based on the cavity length scale and the upper wall velocity, ReL, is considered to be 1000. We discuss here... 

    Microflow in lid-driven microcavity with various aspect ratios

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit ; 2008 ; 9781563479373 (ISBN) Darbandi, M ; Daghighi, Y ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2008
    Abstract
    In this work, a finite-volume-element method1-4 is suitably extended to simulate the rarefied gas flow in lid-driven cavities with different height to width ratios. The flow conditions are chosen in a manner to cover the free molecular transition regime to the continuum one. As the hydrodynamic diameter of a driven cavity becomes comparable with the mean free path of the gas molecules in the cavity, the flow can no longer be considered as being in thermodynamic equilibrium; hence, a variety of non-equilibrium or rarefaction effects emerge. In this study, we show that the non-equilibrium effects in lid-driven cavity can be encountered and they become more serious in lower Knudsen numbers. We... 

    Stabilized Meshless Local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 29, Issue 2 , 2008 , Pages 75-94 ; 15261492 (ISSN) Haji Mohammadi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of steady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based on only a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction equation (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Radial basis functions (RBF) interpolation is employed in shape...