Loading...
Search for: light-dark-cycle
0.006 seconds

    Energy efficient cultivation of microalgae using phosphorescence materials and mirrors

    , Article Sustainable Cities and Society ; Volume 41 , 2018 , Pages 449-454 ; 22106707 (ISSN) Helali Esfahani, H ; Shafii, M. B ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present study, two novel annular photobioreactors (PBR) were developed to enhance microalgae growth. One of these photobioreactors used mirrors outside the PBR, while the other one utilized phosphorescence materials inside the PBR. The results of the study suggested that the use of mirrors and phosphorescence materials led to 70% and 30% increase, respectively, in the light intensity without any additional energy consumption. Further, the results revealed that when compared with the base case, the biomass concentration increased by 91% and 24% in PBR with mirrors and phosphorescence materials, respectively. In conclusion, an improvement in PBRs resulted in efficient light to biomass... 

    The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell

    , Article Bioresource Technology ; Volume 261 , 2018 , Pages 350-360 ; 09608524 (ISSN) Bazdar, E ; Roshandel, R ; Yaghmaei, S ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study develops a photosynthetic microalgae microbial fuel cell (PMMFC) engaged Chlorella vulgaris microalgae to investigate effect of light intensities and illumination regimes on simultaneous production of bioelectricity, biomass and wastewater treatment. The performance of the system under different light intensity (3500, 5000, 7000 and 10,000 lx) and light/dark regimes (24/00, 12/12, 16/8 h) was investigated. The optimum light intensity and light/dark regimes for achieving maximum yield of PMMFC were obtained. The maximum power density of 126 mW m−3, the coulombic efficiency of 78% and COD removal of 5.47% were achieved. The maximum biomass concentration of 4 g l−1 (or biomass yield...