Loading...
Search for: light-metals
0.012 seconds

    Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding

    , Article Materials Science and Engineering A ; Volume 497, Issue 1-2 , 2008 , Pages 132-138 ; 09215093 (ISSN) Pirgazi, H ; Akbarzadeh, A ; Petrov, R ; Kestens, L ; Sharif University of Technology
    2008
    Abstract
    In this study, accumulative roll bonding (ARB) process was carried out on an AA1100 aluminum sheet up to 10 cycles. Electron backscattering diffraction (EBSD) method was utilized to investigate the microstructural evolution during the ARB process. It was observed that the ARB is a promising process for fabricating ultra-fine grained structures in aluminum sheets. The results indicate that several mechanisms are responsible for the microstructural changes at different levels of strain during this process. Grain subdivision as well as the development of sub-grains are the major mechanisms at the early stages of ARB. Strain induced transition of low angle to high angle grain boundaries and the... 

    Study on modification of colloidal silica surface with magnesium ions

    , Article Journal of Colloid and Interface Science ; 2009 , Pages 379-383 ; 00219797 (ISSN) Karami, A ; Sharif University of Technology
    2009
    Abstract
    The prepared colloidal silica via ion exchange was modified by adding Mg+2 ions in the surface growth process of colloidal silica. The particle size of the modified colloidal silica was decreased by increasing the seed concentration, whereas that of colloidal silica was slightly increased as the seeds concentration exceed 15 wt%. But the trend of changes in surface area was completely reversed. Magnesium ions on surface of the modified colloidal silica were identified by the measurement of energy-dispersive X-ray spectrometry (EDS). After modifying with Mg+2 ions, the iso-electric point (IEP) of colloidal silica in pH ∼ 2 without modification, disappears over the whole pH range. © 2008... 

    A comparison of low carbon steel and Al-Mg alloy sheets in quasi-static tearing collisions

    , Article Materials and Design ; Volume 30, Issue 4 , 2009 , Pages 1333-1336 ; 02641275 (ISSN) Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Through tearing test, the absorbed energy of a low carbon steel and an Al-Mg alloy sheets are compared. The tests are carried out quasi-statically using the wedge tools with different angles. Also, the effects of the inclination angle of sheet to vertical and angle between normal to sheet and edge of wedge are investigated on the energy absorption of both the steel and aluminum alloy. The results show that with increasing the later angles, the absorbed energy is decreased and with increasing the wedge angle, the energy is increased. Comparing the absorbed energy of the sheets with the same thicknesses, it is found that the energy absorption of the steel is higher than that of the aluminum... 

    Effect of predeformation and heat treatment conditions in the SIMA process on microstructural and mechanical properties of A319 aluminum alloy

    , Article Journal of Alloys and Compounds ; Volume 468, Issue 1-2 , 2009 , Pages 130-135 ; 09258388 (ISSN) Arami, H ; Khalifehzadeh, R ; Keyvan, H ; Khomamizadeh, F ; Sharif University of Technology
    2009
    Abstract
    In this study the influences of predeformation and heat treatment conditions on stress-induced melt activating process (SIMA) of A319 aluminum alloy were investigated. At 30% of predeformation a dominant globular structure of grains was obtained. However, further increasing of the predeformation rate considerably reduced the shape factor. The holding time of 10-15 min at semi-solid temperature of 580 °C was suggested in order to prevent grain growth. Coarsening of the grains by excess time or temperature of heat treatment reduced the tensile strength of the alloy. © 2008 Elsevier B.V. All rights reserved  

    Texture evolution of AA3003 aluminum alloy sheet produced by accumulative roll bonding

    , Article Materials Science and Engineering A ; Volume 492, Issue 1-2 , 2008 , Pages 110-117 ; 09215093 (ISSN) Pirgazi, H ; Akbarzadeh, A ; Petrov, R ; Sidor, J ; Kestens, L ; Sharif University of Technology
    2008
    Abstract
    The accumulative roll bonding process was carried out on an AA3003 aluminum alloy sheet up to eight cycles. The electron backscattering diffraction (EBSD) method was employed to investigate the microtextural development in the ARB processed sheets. The results indicate that with increasing the number of cycles, the overall texture intensity increases even up to the eighth rolling pass and a strong texture develops. The main textural components are the copper and Dillamore components of which the intensities increase with increasing number of cycles. Measurement of microhardness and lamellar spacing of grains in the processed sheets revealed that the presence of second phase particles in this... 

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell  

    Comparison of microstructural changes in a SIMA processed A356 aluminum alloy after unidirectional compression and rolling: Effect of pressure depth

    , Article Semi-Solid Processing of Alloys and Composites 10 - Selected, peer reviewed papers from the 10th International Conference on Semi-Solid Processing of Alloy and Composites, S2P 2008, Aachen, 16 September 2008 through 18 September 2008 ; Volume 141-143 , 2008 , Pages 391-396 ; 10120394 (ISSN); 9771012039401 (ISBN) Hajian Heidary, M ; Bigdeli, M ; Mahdavi, A ; Khomamizadeh, F ; Sharif University of Technology
    Trans Tech Publications Ltd  2008
    Abstract
    In this study, in order to compare effect of unidirectional compression and rolling on final microstructure of strain induced melt activated (SIMA) A356 aluminum alloy, rectangular samples with dimensions of 3cm×5cm in area and 1cm in thickness and cylindrical specimens with 2.5cm in diameter and 1cm in length, have been prepared for rolling and compressing processes, respectively. Then, these samples were plastically deformed at a same strain in ambient temperature. Afterward, the strained samples were cut into equal quarters. In the next stage, to produce globular microstructure, these specimens were partially remelted in 580°C for different times. Results obtained from light microscopy... 

    Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst

    , Article Materials Research Bulletin ; Volume 138 , 2021 ; 00255408 (ISSN) Gholizadeh Khasevani, S ; Shahsavari, S ; Gholami, M.R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    An environmentally friendly heterogeneous ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite was synthesized by a multistep method. In this study, we have studied low-temperature calcination with relatively inexpensive reactants. The sufficient CD arrays were generated by loading the glucose molecules into the pores of an as-obtained metal-organic framework (MOF), i.e. MIL-88B (Fe)), by heating to 200 °C. Fabricated nanocomposite structures were characterized by FT-IR, XRD, EIS, SEM, TEM, BET, and TGA techniques, demonstrating the decoration of the Bi2S3 on the CDs/MIL-88B (Fe) nanocomposite surface. MOF templating has been chosen as a systemic method for limited size CD formation... 

    Magnetically recyclable Fe3O4@TMU-32 metal-organic framework photocatalyst for tetracycline degradation under visible light

    , Article Inorganic Chemistry ; Volume 60, Issue 23 , 2021 , Pages 17997-18005 ; 00201669 (ISSN) Abdollahi, N ; Ostovan, A ; Rahimi, K ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal-organic frameworks (MOFs) are a new class of porous crystalline materials being used as photocatalysts for efficient pollutant removal and environmental remediation. In this study, the TMU-32 MOF was synthesized as an effective photocatalyst for the photodegradation of tetracycline (TC) with 96% efficiency in 60 min under visible light. The high photocatalytic activity of the TMU-32 MOF is mainly due to its large specific surface area, which is beneficial for promoting both the adsorption of TC and the separation of the photoinduced charges. Moreover, its desired crystallinity makes it a semiconductor with an appropriate band gap energy. Next, a composite of the TMU-32 MOF with Fe3O4... 

    Magnetically recyclable fe3o4@tmu-32 Metal-Organic framework photocatalyst for tetracycline degradation under visible light

    , Article Inorganic Chemistry ; Volume 60, Issue 23 , 2021 , Pages 17997-18005 ; 00201669 (ISSN) Abdollahi, N ; Ostovan, A ; Rahimi, K ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal-organic frameworks (MOFs) are a new class of porous crystalline materials being used as photocatalysts for efficient pollutant removal and environmental remediation. In this study, the TMU-32 MOF was synthesized as an effective photocatalyst for the photodegradation of tetracycline (TC) with 96% efficiency in 60 min under visible light. The high photocatalytic activity of the TMU-32 MOF is mainly due to its large specific surface area, which is beneficial for promoting both the adsorption of TC and the separation of the photoinduced charges. Moreover, its desired crystallinity makes it a semiconductor with an appropriate band gap energy. Next, a composite of the TMU-32 MOF with Fe3O4... 

    Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 135, Issue 5 , 2022 , Pages 2851-2865 ; 18785190 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, graphene oxide/gold/methylene blue (GO/Au/MB) ternary composites were synthesized and characterized through UV–vis, FTIR, XRD, XPS, SEM, and TEM analyses towards plasmon-enhanced singlet oxygen (1O2) generation. Through using gold nanoparticles and MB photosensitizers, the visible light adsorption capability of GO was enhanced by 115%. Moreover, applying this ternary composite as a photocatalyst under visible light interestingly revealed a drastic step-increase of 14% (i.e., from 9 to 23%) in the conversion of photooxygenation of Anthracene. This behavior was rationalized using finite-difference time-domain (FDTD) simulations which confirms the plasmonic field of gold... 

    Plasmon-enhanced photocatalytic activity in the visible range using AgNPs/polydopamine/graphitic carbon nitride nanocomposite

    , Article Applied Surface Science ; Volume 585 , 2022 ; 01694332 (ISSN) Shahsavandi, F ; Amirjani, A ; Reza Madaah Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Developing an efficient visible-light-driven photocatalyst is believed to be a practical solution for clean energy and environmental remediation. The present study aimed to broaden current knowledge of the graphitic carbon nitride (g-C3N4)-based plasmonic photocatalysts by decorating polydopamine-grafted g-C3N4 (PDA/g-C3N4) with silver nanoparticles (AgNPs). The nanocomposite was prepared using a facile synthesis method, while XPS and microscopy measurements confirmed the homogenous dispersion of AgNPs on PDA/g-C3N4. AgNPs successfully reduced the recombination rate of photoinduced electron-hole pairs. The calculated bandgap energy was decreased from 2.7 eV for pure g-C3N4 to 2.1 eV for... 

    Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization

    , Article Materials Characterization ; Volume 108 , October , 2015 , Pages 102-114 ; 10445803 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Gerlich, A. P ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    A fine-grained Al-Mg/Al3Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 μm), un-reacted titanium particles (<40 μm) and reinforcement particles of Al3Ti (<100 nm) and Mg2Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum... 

    Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum-magnesium alloy

    , Article Materials Science and Engineering A ; Volume 642 , August , 2015 , Pages 215-229 ; 09215093 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Švec, P ; Simančík, F ; Gerlich, A. P ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    An aluminum-magnesium alloy was friction-stir processed in the presence of TiO2 nanoparticles which were pre-placed in a groove on the surface to produce a composite. Field emission-scanning and transmission electron microscopy studies show that solid state chemical reactions occur between the Al-Mg matrix and the ceramic particles upon the severe plastic deformation process. The microstructure of the aluminum alloy consists of a coarse grain structure, large complex (Fe,Mn,Cr)3SiAl12 particles, and small Mg2Si precipitates. After friction stir processing, a deformed grain structure containing rod-like Al-Fe-Mn-Si precipitates is attained, along... 

    Charge-transfer complexes of 4-nitrocatechol with some amino alcohols

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 75, Issue 3 , 2010 , Pages 970-977 ; 13861425 (ISSN) Baniyaghoob, S ; Najafpour, M. M ; Boghaei, D. M ; Sharif University of Technology
    2010
    Abstract
    Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H2O and H2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol-1 (M-1). These interactions are exothermic and have relatively large standard... 

    Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities

    , Article Journal of Colloid and Interface Science ; Volume 537 , 2019 , Pages 66-78 ; 00219797 (ISSN) Kheirabadi, M ; Samadi, M ; Asadian, E ; Zhou, Y ; Dong, C ; Zhang, J ; Moshfegh Zaker, A. R ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM). In addition, diameter of silver nanoparticles grown on the ZnO nanorods with the average aspect ratio of 5 was determined in the range of 30–80 nm by using transmission electron microscopy... 

    Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum

    , Article International Journal of Advanced Manufacturing Technology ; Volume 38, Issue 3-4 , 2008 , Pages 258-267 ; 02683768 (ISSN) Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2008
    Abstract
    In the present study, the temperature and the velocity fields during gas tungsten arc welding of commercial pure aluminum were simulated using the solution of the equations of conversation of mass, energy and momentum in three dimensions and under steady-state heat transfer and fluid flow conditions. Then, by means of the prediction of temperature and velocity distributions, the weld pool geometry, weld thermal cycles and various solidification parameters were calculated. To verify the modeling results, welding experiments were conducted on two samples with different thicknesses and the geometry of the weld pool was measured. It is found that there is a good agreement between the predicted... 

    Mechanical induced reaction in Al-CuO system for in-situ fabrication of Al based nanocomposites

    , Article Journal of Alloys and Compounds ; Volume 465, Issue 1-2 , 2008 , Pages 151-156 ; 09258388 (ISSN) Arami, H ; Simchi, A ; Seyed Reihani, S. M ; Sharif University of Technology
    2008
    Abstract
    Gradual chemical (displacement) reaction between CuO and Al powders during high-energy attrition milling under a high purity argon atmosphere was studied. Differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were employed to study the solid-state reaction. It was shown that the solid-state reaction occurred during mechanical alloying (MA) and resulted in the dissolution of copper into the aluminum lattice and formation of nanometric alumina particles. The reinforcement particles were mostly distributed at the grain boundaries of Al matrix with an average crystallite size of about 50 nm. In DTA curve of the milled powders, a small... 

    Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-fenton-like degradation of organic contaminants

    , Article Journal of Colloid and Interface Science ; Volume 602 , 2021 , Pages 73-94 ; 00219797 (ISSN) Bagherzadeh, B ; Kazemeini, M ; Mahmoodi, N. M ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Herein, MIL-101(Fe), CoFe2O4, novel binary (MIL-101(Fe)/CoFe2O4, MIL-101(Fe)/GO and CoFe2O4/GO), and ternary (MIL-101(Fe)/CoFe2O4/(3%)GO and MIL-101(Fe)/CoFe2O4/(7%)GO) magnetic composites based upon the MIL-101(Fe) were synthesized. The XRD, FESEM, TEM, EDX, BET-BJH, FTIR, VSM, DRS, PL, EIS and other electrochemical analyses were applied to characterize samples. The MIL/CoFe2O4/(3%)GO demonstrated the best performance compared to other samples for visible light photocatalytic and photo-Fenton-like degradation of Direct Red 23 (DtR-23), Reactive Red 198 (ReR-198) dyes as well as Tetracycline Hydrochloride (TC-H) antibiotic. Degradation of dyes using the ternary composite after 70 min of... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly...