Loading...
Search for: lightweight-and-high-throughput-cryptographic-architectures
0.01 seconds

    High-throughput low-complexity systolic montgomery multiplication over GF(2m) Based on Trinomials

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 62, Issue 4 , January , 2015 , Pages 377-381 ; 15497747 (ISSN) Bayat Sarmadi, S ; Farmani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Cryptographic computation exploits finite field arithmetic and, in particular, multiplication. Lightweight and fast implementations of such arithmetic are necessary for many sensitive applications. This brief proposed a low-complexity systolic Montgomery multiplication over GF(2m). Our complexity analysis shows that the area complexity of the proposed architecture is reduced compared with the previous work. This has also been confirmed through our application-specific integrated circuit area and time equivalent estimations and implementations. Hence, the proposed architecture appears to be very well suited for high-throughput low-complexity cryptographic applications  

    High-throughput low-complexity unified multipliers over GF(2m) in dual and triangular bases

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume PP, Issue 99 , 2016 ; 15498328 (ISSN) Salarifard, R ; Bayat Sarmadi, S ; Farmani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Multiplication is an essential operation in cryptographic computations. One of the important finite fields for such computations is the binary extension field. High-throughput low-complexity multiplication architectures lead to more efficient cryptosystems. In this paper, a high-throughput low-complexity unified multiplier for triangular and dual bases is presented, and is referred to as basic architecture. This multiplier enjoys slightly simpler and more regular structure due to use of the mentioned bases. Additionally, structurally improved architectures have been proposed, which have smaller time complexity than basic ones. This is achieved by the use of parallel processing method....