Loading...
Search for: limit-diagrams
0.007 seconds
Total 51 records

    The comparison of M-K and GTN models in prediction of forming limit diagrams

    , M.Sc. Thesis Sharif University of Technology Soleimanifard, Ali (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    Knowing the magnitude of the maximum strain before necking is of utmost importance in the processes of designing sheet metals. Thus, numerous experimental and theoretical efforts have been done to answer these questions. In order to predict allowed strains in biaxial stretching, an experimental diagram was introduced called “Forming Limit Diagram” in which major strain is plotted versus minor strain and if the corresponding point to the strain on the sheet is higher than this diagram, necking will occur. One of the most popular methods of obtaining forming limit diagrams is using a hemispherical rod for shaping sheet, which is named as “Nakazima Test” and then the critical strains are... 

    Experimental and Numerical Determination of Forming Limit Diagram of Two-layer Sheets Considering the Interface between Layers

    , M.Sc. Thesis Sharif University of Technology Hosseini, Mohammad Reza (Author) ; Asempour, Ahmad (Supervisor)
    Abstract
    In recent years, two-layer sheets have been used in various industries. In this research, the formability of a two-layer sheet which is made of 1.35 mm steel and 0.45 mm copper sheets has been studied. The two-layer sheet used in this study was made by explosive welding method. In order to investigate the formability of the sheet, forming limit diagram was determined. First, Marciniak-Kuczynski (M-K) model was used. In order to determine forming limit diagram using this method, the two-layer sheet was equated with a single-layer sheet and MATLAB software was used. The two-layer sheet was also modeled in finite element software ABAQUS. In order to determine the forming limit diagram, Nakazima... 

    Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 232, Issue 8 , 2018 , Pages 625-636 ; 14644207 (ISSN) Habibi, M ; Hashemi, R ; Ghazanfari, A ; Naghdabadi, R ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient... 

    Prediction of FLD for sheet metal by considering through-thickness shear stresses

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Ghazanfari, A ; Soleimani, S. S ; Keshavarzzadeh, M ; Habibi, M ; Assempuor, A ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the effect of through-thickness shear (TTS) stress has been examined on the prediction of forming limit diagrams (FLDs). Determination of the FLD is based on the Marciniak–Kuczynski (M–K) model with some modifications on the stress states for consideration of the TTS stress effects. For solving the equations, the Newton–Raphson method has been used. Furthermore, the Nakazima test has been simulated to investigate the stress state which occurs in the sheet during the test. Results showed that the formability of sheet metal could be better as the through-thickness stress increased. Also, implementation of TTS stress in the present model, the corresponding FLD has better... 

    Prediction of FLD for sheet metal by considering through-thickness shear stresses

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Ghazanfari, A ; Soleimani, S. S ; Keshavarzzadeh, M ; Habibi, M ; Assempuor, A ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the effect of through-thickness shear (TTS) stress has been examined on the prediction of forming limit diagrams (FLDs). Determination of the FLD is based on the Marciniak–Kuczynski (M–K) model with some modifications on the stress states for consideration of the TTS stress effects. For solving the equations, the Newton–Raphson method has been used. Furthermore, the Nakazima test has been simulated to investigate the stress state which occurs in the sheet during the test. Results showed that the formability of sheet metal could be better as the through-thickness stress increased. Also, implementation of TTS stress in the present model, the corresponding FLD has better... 

    Prediction of FLD for sheet metal by considering through-thickness shear stresses

    , Article Mechanics Based Design of Structures and Machines ; Volume 48, Issue 6 , 2020 , Pages 755-772 Ghazanfari, A ; Soleimani, S. S ; Keshavarzzadeh, M ; Habibi, M ; Assempuor, A ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, the effect of through-thickness shear (TTS) stress has been examined on the prediction of forming limit diagrams (FLDs). Determination of the FLD is based on the Marciniak–Kuczynski (M–K) model with some modifications on the stress states for consideration of the TTS stress effects. For solving the equations, the Newton–Raphson method has been used. Furthermore, the Nakazima test has been simulated to investigate the stress state which occurs in the sheet during the test. Results showed that the formability of sheet metal could be better as the through-thickness stress increased. Also, implementation of TTS stress in the present model, the corresponding FLD has better... 

    Determination of Forming Limit Diagram with Existence of Normal Stress and Investigation on the Methods of Calibration in this Diagram

    , M.Sc. Thesis Sharif University of Technology Khakpour Nejad Khaki, Hamid (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    Theoretical studies in the analysis of sheet metal failures are referred to obtain the Forming Limit Diagrams (FLDs). Since extracting the Forming Limit Diagrams experimentally is cost and time consuming, many researches have been accomplished for obtaining these diagrams theoretically. However, in many of these researches, the assumption of plane stress state has been used to obtain the FLD, which is not correct in some processes such as hydroforming because of high level of normal stress. In this study, determination of the forming limit diagram with existence of the normal stress is based on the Marciniak and Kuczynski model. Newton-Raphson method has been used to find the set of... 

    Calibration of forming limit diagrams using a modified Marciniak-Kuczynski model and an empirical law

    , Article Materials and Design ; Volume 34 , Feb , 2012 , Pages 185-191 ; 02641275 (ISSN) Ghazanfari, A ; Assempour, A ; Sharif University of Technology
    2012
    Abstract
    The major problem in determining the forming limit diagram (FLD) with the Marciniak-Kuczynski (M-K) model is the necessity of an experimental point in order to find the initial inhomogeneity coefficient and calibrate the diagram. The purpose of the present work is to eliminate this requirement. To do this, the usual assumption of geometrical inhomogeneity has been replaced with material inhomogeneity and it has been shown that the sensitivity of the diagram to variations of the inhomogeneity factor is reduced greatly with the new assumption. Using this advantage and collecting enough experimental data for different materials, an empirical law in terms of sheet thickness has been proposed... 

    Analysis of deep drawing process to predict the forming severity considering inverse finite element and extended strain-based forming limit diagram

    , Article Journal of Computational and Applied Research in Mechanical Engineering ; Volume 8, Issue 1 , 2018 , Pages 39-48 ; 22287922 (ISSN) Bostan Shirin, M ; Hashemi, R ; Assempour, A ; Sharif University of Technology
    Shahid Rajaee Teacher Tarining University (SRTTU)  2018
    Abstract
    An enhanced unfolding inverse finite element method (IFEM) is used together with an extended strain-based forming limit diagram (EFLD) to develop a fast and reliable approach to predict the feasibility of the deep drawing process of a part and determining where the failure or defects can occur. In the developed unfolding IFEM, the meshed part is properly fold out on the flat sheet and treated as a 2D problem to reduce the computation time. The large deformation relations, nonlinear material behavior and friction conditions in the blank holder zone are also considered to improve the accuracy and capability of the proposed IFEM. The extended strain-based forming limit diagram based on the... 

    Application of Inverse Finite Element in Tube Hydroforming

    , M.Sc. Thesis Sharif University of Technology Einolghozati, Mona (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    The inverse Finite Element method (IFEM) has been used for estimation of the initial length of tube, axial feeding and fluid pressure in tube hydroforming. The already developed IFEM algorithm, which has been used in this work, is based on the total deformation theory of plasticity. Although the nature of tube hydroforming is three-dimensional deformation, a technique has been used to perform the computations in two-dimensional space. Therefore, compared with conventional forward finite element methods, the present computations are quite fast with no try and error process. The solution provides all the components of strain. Using the forming limit diagram (FLD), the components of strain can... 

    Experimental and Theoretical Investigations of Calibration Methods and Factors Influencing the Forming Limit Diagrams

    , M.Sc. Thesis Sharif University of Technology Ghazanfari, Amir (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    In designing of sheet metal forming processes, knowledge of the maximum permissible strains in the sheet is of prime importance for the design engineer. Thus, a large amount of experimental and theoretical researches have been carried out to estimate these limiting strains. A renowned and prevalent theoretical method for prediction of forming limits is the Marciniak and Kuczynski model. In this model, it is assumed that a small groove exists in the sheet even before applying the loads; and due to the weakness of this region, necking starts from there. The major problem of the M-K model is requiring of an experimental point to “calibrate” the results. Furthermore, while experiments indicate... 

    Effects of Bending on Forming Limit Diagram (FLD)Based on Marciniak & Kuczynski Method

    , M.Sc. Thesis Sharif University of Technology Ehtiati, Saeed (Author) ; Asempour, Ahmad (Supervisor)
    Abstract
    In designing sheet forming processes, finding out the value of the maximum strain before necking in sheets is extremely important. Therefore, many experimental and theoretical efforts have been carried out in order to answer this question. One of the most well-known and useful theoretical methods in this regard is the Marciniak - Kuczynski method which was introduced in 1967 and is still the topic of many researches. In this model, it is assumed that a groove as a defect primarily exists in the sheet and due to the weakness of this region, necking will initiate. Furthermore, the effects of various parameters such as sensitivity to strain rate, strain path, thickness, three dimensional... 

    Investigate the Formation of Metal Sheets by Damage Mechanics

    , M.Sc. Thesis Sharif University of Technology Amirshekari, Yaser (Author) ; Asempoor, Ahmad (Supervisor)
    Abstract
    One of the oldest and most used methods in shaping metals is the formation of metal sheets. In designing the process of printing, it's important to know how much the strain on the sheet prior to slipping is. In order to predict the permissible strains in the two-axis stretch of the sheet, they introduced an empirical diagram called the shape-forming diagram. There are various methods for analyzing the formation of metallic sheets, which can be referred to by M-K method, GTN method, continuous damage mechanics method (CDM). In this research, we have tried to obtain the shape of a metal sheet in various strain paths by studying the method of CDM and modeling the mechanical behavior of the... 

    Formability of CO2 Laser Tailor Welded Blanks (TWB)

    , M.Sc. Thesis Sharif University of Technology Ataei, Amir (Author) ; Kokabi, Amir Hossein (Supervisor) ; Akbarzade, Abbas (Supervisor)
    Abstract
    There is a major interest to manufacturers of automobile and aerospace parts towards the tailor-welded blanks (TWBs) to reduce the weight and cost of the parts and improve their performance. In this work, formability of four groups of TWBs (two groups with similar thicknesses and different steels and two groups with similar steels and different thicknesses) are investigated. To produce the TWBs, DX54, E275 and E335 steel sheets were used. The results indicate that the inclined laser beam causes the sample failure from the weld zone in the tensile test. Setting the focal point on the top surface of the sheets results in enhancement of yield strength in comparison to the other positions. ... 

    Determination of Forming Limit Diagrams by Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Movaffaghi, Sanli (Author) ; Asempour, Ahmad (Supervisor)
    Abstract
    In recent decades, the importance of theoretical and experimental researches on sheet metal forming has been revealed due to its wide-spreading applications. The purpose of these researches is to optimize the forming processes and minimize the existing imperfections. Since classical theories don’t include parameters for describing the dependence of metals behavior on size effects or inhomogeneous plastic deformation effects, gradient theories are considered in many researches. In gradient theories, this dependence is considered by changing the constitutive equations and the existence of higher order of strain gradient in zones with inhomogeneous deformation. By considering the localized and... 

    The effect of the imposed boundary rate on the formability of strain rate sensitive sheets using the M-K Method

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 9 , April , 2013 , Pages 2522-2527 ; 10599495 (ISSN) Hashemi, R ; Ghazanfari, A ; Abrinia, K ; Assempour, A ; Sharif University of Technology
    2013
    Abstract
    In spite of the fact that the experimental results indicate the significant effect of strain rate on forming limits of sheets, this effect is neglected in all theoretical methods of prediction of Forming Limit Diagrams (FLDs). The purpose of this paper is to modify the most renowned theoretical method of determination of FLDs (e.g., M-K model) so as to enable it to take into account the effect of strain rate. To achieve this aim, the traditional assumption of preexistence of an initial geometrical inhomogeneity in the sheet has been replaced with the assumption of a preexisting "material" inhomogeneity. It has been shown that using this assumption, the strain rate would not be omitted from... 

    Forming limit diagrams of ground St14 steel sheets with different thicknesses

    , Article SAE International Journal of Materials and Manufacturing ; Volume 5, Issue 1 , 2012 , Pages 60-64 ; 19463979 (ISSN) Hashemi, R ; Ghazanfari, A ; Abrinia, K ; Assempour, A ; Sharif University of Technology
    2012
    Abstract
    The influence of sheet thickness on sheet metal forming limits is a controversial issue; while some investigations indicate the considerable influence of thickness on forming limit diagrams (FLDs), others suggest that it is of negligible importance. In the present work, it has been demonstrated that if the thickness-reduction process is chosen so as not to alter the micro structure of the material, the forming limits do not change with variations of thickness. A material which has extensive usage in sheet metal forming processes of automotive industry (St14) has been provided. The initial thickness of the sheet is 1.5mm and using grinding process (which does not alter the microstructure) the... 

    Experimental investigation and crystal plasticity-based prediction of AA1050 sheet formability

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 231, Issue 8 , 2017 , Pages 1341-1349 ; 09544054 (ISSN) Hajian, M ; Assempour, A ; Akbarzadeh, A ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    This article presents a crystal plasticity methodology to evaluate the AA1050 sheet formability. In order to determine the orientation distribution of the crystals, initial texture of the material is measured through X-ray diffraction technique. Also, the stress-strain behavior of the material is determined by performing tensile test. In order to simulate the path-dependent crystal plasticity behavior of body-centered cubic crystal structures, a UMAT subroutine that employs the rate-dependent crystal plasticity model along with the power law hardening was developed previously by the authors and linked to the finite element software ABAQUS. This subroutine was further developed to simulate... 

    Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets

    , Article Journal of Manufacturing Processes ; Volume 47 , 2019 , Pages 310-323 ; 15266125 (ISSN) Amelirad, O ; Assempour, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Effects of the grain size on the forming limits of stainless steel 316 L sheets are investigated using crystal plasticity finite element method (CPFEM) by modeling of all grains. For preparing simulation models with different grain morphology, a grain generator code is developed. Using data from metallographic images, texture, and material properties, the developed code can be used for preprocessing of CPFEM. In order to extract mechanical and metallurgical data required for CPFEM, some experiments are carried out on different samples. Moreover, for the purpose of implementing the crystal plasticity formulations, an Abaqus user material subroutine (UMAT) is developed. Concerning the... 

    Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Alipour, M ; Torabi, M. A ; Sareban, M ; Lashini, H ; Sadeghi, E ; Fazaeli, A ; Habibi, M ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element...