Loading...
Search for: linear-elastic-fracture-mechanics
0.007 seconds

    Fully enriched weight functions in mesh-free methods for the analysis of linear elastic fracture mechanics problems

    , Article Engineering Analysis with Boundary Elements ; Vol. 43 , 2014 , pp. 1-8 Namakian, R ; Shodja, H. M ; Mashayekhi, M ; Sharif University of Technology
    Abstract
    The so-called enriched weight functions (EWFs) are utilized in mesh-free methods (MMs) to solve linear elastic fracture mechanics (LEFM) problems; the following issues are of concern: convergence behavior; sufficiency of EWFs to capture singular fields around the crack-tip; and the preservation of the J-integral path-independency. EWFs prove useful in conjunction with the moving least square reproducing kernel method (MLSRKM); for this purpose, both EWFs and MLSRKM are modified. Since EWFs are not truly representative of the near-tip solution, fully EWFs (FEWFs) are introduced. Finally, some descriptive examples address the aforementioned concerns and the accuracy and efficacy of the... 

    Modeling of Crack Propagation in Saturated Two Phase Porous Media Using X-FEM

    , M.Sc. Thesis Sharif University of Technology Vahhab, Mohammad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Twophase medias are one of the most complicated medias in engineering and because of its importance, its been considered by a lot of researchers ever since. Varaioty of the problems in these medias, has ended in lots of methods for studing them. The primariative efforts in modeling deformable pouros medias was done by Terzaghi and others have improved the primary consepts and have suggested different methods. One of the most common and applicable methods in these medias is u-p formulation. This form is applicable in low frequencies (such as earthquakes) with great accuracy. In this thises, this form is used as primery formulation. Because deformation in multiphase problems can be large, in... 

    Multiscale Modeling of Microstructure Discontinuities in Saturated Porous Media Using XFEM

    , M.Sc. Thesis Sharif University of Technology Misaghi Bonabi, Amin (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The main purpose of this study is computational modeling of saturated deformable porous media using multiscale finite element method and explicit modeling of discontinuities such as microcracks at the microscopic scale. The real engineering problems we deal with in the simulation of the phenomenas happening in nature or industrial applications, in contrast to the simplifications being assumed, occur in heterogeneous materials. Although most microscopic heterogeneities are not present in macroscopic scale, they do have their effects on material behavior. In the computational homogenization method, the problem is analyzed coupled in two scales, therefore, the macroscopic behavior of media is... 

    Effect of coarse aggregate volume on fracture behavior of self compacting concrete

    , Article Construction and Building Materials ; Volume 52 , 15 February , 2014 , Pages 137-145 ; ISSN: 09500618 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rahmani, E ; Rabbanifar, S ; Eslami, M ; Sharif University of Technology
    Abstract
    This paper presents the effect of volume of coarse aggregate on fracture characteristics of self- compacting concrete (SCC). Based on an experimental programme, a series of three point bending tests were carried out on 58 notched beams. SCC was prepared with coarse aggregate in varying percentages of 30%, 40%, 50% and 60% (as the percentage of the total aggregate volume). For all mixes, the fracture parameters were analyzed by the work-of- fracture method (WFM) and by the size effect method (SEM) to obtain a suitable correlation between these methods which is used to calibrate fracture numerical models. The results showed that with decrease of volume of coarse aggregate from 60% to 30% in... 

    Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks

    , Article Journal of Sound and Vibration ; Volume 332, Issue 24 , November , 2013 , Pages 6312-6320 ; 0022460X (ISSN) Behzad, M ; Ghadami, A ; Maghsoodi, A ; Michael Hale, J ; Sharif University of Technology
    2013
    Abstract
    In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each... 

    Modelling of Elastic and Plastic Deformation Fracture and Crack Propagation in 3D Problems Using Adaptive Finite Element Method

    , Ph.D. Dissertation Sharif University of Technology Moslemi, Hamid (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Numerical methods in fracture and crack propagation problems usually involve high computational costs. Adaptive finite element method is one of the techniques which can be used to simulate the crack propagation with an acceptable accuracy. In this thesis, various constitutive models are implemented for simulation of fracture, including the linear elastic fracture mechanics, cohesive zone model and continuum damage mechanics. The fracture mechanical evaluation is performed on a general integral technique for non-planar curved cracks in LEFM. In the second model, a bilinear cohesive zone model is applied to implement the traction-separation law. The Lemaitre damage model is employed and the... 

    Develop Methods of Life Wheel Locomotive Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Prhami, Esmat (Author) ; Adib Nazari, Saeed (Supervisor)
    Abstract
    The first project ,paid to review and analysis types of crack and agents Also, was referred methods to control them in rail industry .
    The wheel of Alestom train and UIC60 rail were simulated and stress analysis by software FEM (ANSYS and ABAQUS) , and effect of various parameters such as applied forces , train wheel diameter , contact position and rail inclination on stress values was studied . For comparision of results has been used analytic Hertz theory .
    By using experimental data on the subsurface crack , those cracks were created in the wheel . For load on the modeling wheel and rail, ,assuming contact on the wheel rolling point , were used vertical load of wagon weight ( with... 

    Employing Enriched Meshfree MLSRK Method to Analyze 2D Linear Elastic Fracture Mechanics Problems

    , M.Sc. Thesis Sharif University of Technology Namakian, Reza (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    The so-called moving least square reproducing kernel method (MLSRKM), which is a meshfree Galerkin method, has two special properties in comparison with its prior version, say moving least square method (MLSM): (i) stability in preserving completeness conditions to the desired order for a discrete reproducing formula due to implementation of shifted and scaled basis, (ii) use of more accurate quadrature weights in a discrete reproducing form, especially along boundaries. However, because of employing shifted basis in MLSRKM, some of enrichment techniques, specifically in the context of linear elastic fracture mechanics (LEFM) problems, cannot be applied to this method. Therefore, we are... 

    The effect of stiffness on stress intensity factor for a crack in annular disc under constant central torque

    , Article International Journal of Damage Mechanics ; Volume 19, Issue 8 , 2010 , Pages 1001-1015 ; 10567895 (ISSN) Sakhaee Pour, A ; Gowhari Anaraki, A. R ; Hardy, S. J ; Sharif University of Technology
    2010
    Abstract
    The finite element method has been used to predict the stress intensity factors for cracked annular discs under constant central torque. Linear elastic fracture mechanics finite element analyses have been performed and the results are demonstrated in the form of crack configuration factors. To this end, the extensive ranges of crack configuration factors have been employed while considering the effect of disc stiffness. Then, the finite element results are applied to develop equivalent prediction equations using a statistical multiple nonlinear regression model. The accuracy of this model is measured using a multiple coefficient of determination, R2, where 0 ≤R2 ≤1. This coefficient is found... 

    A fully coupled element-free Galerkin model for hydro-mechanical analysis of advancement of fluid-driven fractures in porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 40, Issue 16 , 2016 , Pages 2178-2206 ; 03639061 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi-analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element-free Galerkin (EFG) mesh-less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity... 

    Sifs for radial cracks in annular discs under internal and external shrinkage pressure and constant angular velocity

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 7 , 2007 , Pages 653-659 ; 0791843017 (ISBN) Sakhaee Pour, A ; Gowhari Anaraki, A. R ; Hardy, S. J ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Finite element method has been implemented to predict stress intensity factors (SIFs) for radial cracks in annular discs under constant angular velocity. Effects of internal and external uniform pressure on the SIFs have also been considered. Linear elastic fracture mechanics finite element analyses have been performed and results are presented in the form of crack configuration factors for a wide range of components and crack geometry parameters. These parameters are chosen to be representative of typical practical situations. The extensive range of crack configuration factors obtained from the analyses is then used to develop equivalent prediction equations via a statistical multiple... 

    Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials

    , Article Strength of Materials ; Volume 47, Issue 5 , September , 2015 , Pages 740-754 ; 00392316 (ISSN) Haeri, H ; Khaloo, A ; Marji, M. F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Rocks and rock-like materials frequently fail under compression due to the initiation, propagation and coalescence of the pre-existing microcracks. The mechanism of microcrack coalescence process in rock-like materials is experimentally and numerically investigated. The experimental study involves some uniaxial compression tests on rock-like specimens specially prepared from portland pozzolana cement, mica sheets and water. The microcrack coalescence is studied by scanning electron microscopy on some of the prepared thin specimens. It is assumed that the mica sheets play the role of microcracks within the specimens. Some analytical and numerical studies are also carried out to simulate the...