Loading...
Search for: linear-integrated-circuits
0.019 seconds

    A 1/4 rate linear phase detector for PLL-based CDR circuits

    , Article ISCAS 2006: 2006 IEEE International Symposium on Circuits and Systems, Kos, 21 May 2006 through 24 May 2006 ; 2006 , Pages 3281-3284 ; 02714310 (ISSN); 0780393902 (ISBN); 9780780393905 (ISBN) Saffari, M ; Atarodi, M ; Tajalli, A ; Sharif University of Technology
    2006
    Abstract
    In this paper, a new 1/4 rate clock linear phase detector (PD) structure for PLL-based clock and data recovery (CDR) circuits will be suggested. The proposed topology offers a more suitable PD for high speed applications compared to the conventional topologies. The effect of duty cycle variation on the operation of CDR has been also studied. Designed in a 0.18μm CMOS technology, the proposed PD consumes 16mA from a 1.8V voltage supply. © 2006 IEEE  

    An n-path enhanced-q tunable filter with reduced harmonic fold back effects

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 60, Issue 11 , 2013 , Pages 2867-2877 ; 15498328 (ISSN) Mohammadpour, A ; Behmanesh, B ; Atarodi, S. M ; Sharif University of Technology
    2013
    Abstract
    A high-Q, tunable, bandpass filtered amplifier structure is proposed which is based on a novel Q enhancement technique in N-path filters. Using Fourier series analysis, frequency response of an N-path filter as well as the aliasing effects which are present in it are derived. Frequency translation of unwanted contents at higher frequencies to the center frequency of the bandpass filter is called harmonic fold back (HFB). It is shown that using an additional N-path filter with the same clock frequency but different clock phases can reduce the HFB. The required conditions for fold back elimination are derived fromFourier series expansion analysis. In order to achieve HFB reduction as well as... 

    A new simple method for analysing of thermal noise in switched-capacitor filters

    , Article International Journal of Electronics ; Volume 99, Issue 12 , Feb , 2012 , Pages 1729-1737 ; 00207217 (ISSN) Rashtian, M ; Hemmatyar, A. M. A ; Hashemipour, O ; Sharif University of Technology
    2012
    Abstract
    Thermal noise is one of the most important challenges in analogue integrated circuits design. This problem is more crucial in switched-capacitor (SC) filters due to the aliasing effect of wide-band thermal noise. In this article, a new simple method is proposed for estimating the power spectrum density of output thermal noise in SC filters, which have acceptable accuracy and short running time. In the proposed method, first using HSPICE simulator, accurate value of accumulated sampled noise on sampler capacitors in each clock state is achieved. Next, using difference equations of the SC filter, frequency response of the SC filter is shaped by time domain analysis. Based on the proposed... 

    A full 360° vector-sum phase shifter with very low rms phase error over a wide bandwidth

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 60, Issue 6 PART 1 , 2012 , Pages 1626-1634 ; 00189480 (ISSN) Asoodeh, A ; Atarodi, M ; Sharif University of Technology
    2012
    Abstract
    An innovative vector-sum phase shifter with a full 360° variable phase-shift range in 0.18-μm CMOS technology is proposed and experimentally demonstrated in this paper. It employs an I/Q network with high I/Q accuracy over a wide bandwidth to generate two quadrature basis vector differential signals. The fabricated chip operates in the 2.3-4.8 GHz range. The root-mean-square gain error and phase error are less than 1.1 dB and 1.4° over the measured frequency span, respectively. The total current consumption is 10.6 mA (phase shifter core: ∼2.6 mA) from a 1.8 V supply voltage and overall chip size is 0.87 × 0.75 mm 2. To the best of the authors' knowledge, this circuit is the first... 

    An area and power optimization technique for CMOS bandgap voltage references

    , Article Analog Integrated Circuits and Signal Processing ; Volume 62, Issue 2 , 2010 , Pages 131-140 ; 09251030 (ISSN) Tajalli, A ; Chahardori, M ; Khodaverdi, A ; Sharif University of Technology
    2010
    Abstract
    This article explores the main tradeoffs in design of power and area efficient bandgap voltage reference (BGR) circuits. A structural design methodology for optimizing the silicon area and power dissipation of CMOS BGRs will be introduced. For this purpose, basic equations of the bandgap circuit have been adapted such that can simply be applied in the optimization process. To improve the reliability of the designed circuit, the effect of amplifier offset has been also included in the optimization process. It is also shown that the minimum achievable power consumption and area are highly depending on the fabrication process parameters especially sheet resistivity of the available resistors in... 

    A sub 1 v high PSRR CMOS bandgap voltage reference

    , Article Microelectronics Journal ; Volume 42, Issue 9 , 2011 , Pages 1057-1065 ; 00262692 (ISSN) Chahardori, M ; Atarodi, M ; Sharifkhani, M ; Sharif University of Technology
    2011
    Abstract
    A Bandgap circuit capable of generating a reference voltage of less than 1 V with high PSRR and low temperature sensitivity is proposed. High PSRR achieved by means of an improved current mode regulator which isolates the bandgap voltage from the variations and the noise of the power supply. A vigorous analytical approach is presented to provide a universal design guideline. The analysis unveils the sensitivity of the circuit characteristic to device parameters. The proposed circuit is fabricated in a 0.18μm CMOS technology and operates down to a supply voltage of 1.2 V. The circuit yields 20 ppm/°C of temperature coefficient in typical case and 50 ppm/°C of temperature coefficient in worst...