Loading...
Search for: linear-motors
0.006 seconds

    Modeling and Nonlinear Control of Two Novel Linear Motors

    , M.Sc. Thesis Sharif University of Technology Emami Meybodi, Yaser (Author) ; Ghaemi Osgouie, Kambiz (Supervisor) ; Khayyat, Amir Ali Akbar (Supervisor)
    Abstract
    Different types of motion mechanisms can be found in any complicated or simple mechanical structure and linear motion is one of the most frequently used mechanisms for sure. In recent years, a wide variety of designs are developed to create linear motion, each one having many positive and negative points. Among already existing designs, those based on linear actuation are more considerable compared to those using a mechanical convertor to transform rotary motion to linear motion. This thesis presents two newly designed linear motors which utilize linear electromagnet actuators in their structures. In this study nonlinear models are developed for two linear motors. Although all conditions and... 

    Algorithm for equilibrium transit assignment problem

    , Article Transportation Research Record ; Issue 1923 , 2005 , Pages 227-235 ; 03611981 (ISSN) Babazadeh, A ; Aashtiani, H. Z ; Sharif University of Technology
    National Research Council  2005
    Abstract
    Transit assignment is an important problem in the literature of transportation. Almost all competitive algorithms in this area are strategy based. For uncongested transit networks, the problem may be formulated into an optimization problem for which good solution algorithms exist. A variational inequality formulation of the problem with several solution methods is also presented in the literature for congested networks. This paper is devoted to solving a transit assignment problem based on complementarity formulation using path flows. The solution algorithm exploits the three concepts of decomposition, path generation, and linearization. The procedure has been applied on a large-scale... 

    Simulation and experimental validation of flow-current characteristic of a sample hydraulic servo valve

    , Article Scientia Iranica ; Volume 17, Issue 5 B , 2010 , Pages 327-336 ; 10263098 (ISSN) Sadooghi, M. S ; Seifi, R ; Saadat Foumani, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents a novel model to simulate the flow-current characteristic curve of an electro-hydraulic servo valve in steady state condition. This characteristic curve has three major zones: dead zone, linear zone and saturation zone. By using the presented approach, we can simulate the behavior of all types of valves including under lapped, critical center (zero lapped) and over lapped valves. A hydraulic tester has been designed and constructed for validation of the results. It can test the performance of flow-current and some other properties of the valve. Comparison of experimental and simulated curves describes that the model has an acceptable accuracy in determining the four... 

    Cogging force mitigation techniques in a modular linear permanent magnet motor

    , Article IET Electric Power Applications ; Volume 10, Issue 7 , 2016 , Pages 667-674 ; 17518660 (ISSN) Tootoonchian, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Modular linear doubly salient permanent magnet motors are well adapted to linear propulsion systems because of their distinct characteristics, such as high efficiency and power density, reduced maintenance and initial cost, low noise and permanent magnet (PM) leakage flux, and fault tolerance capability. However, such motors suffer from high cogging thrust. In this study, various techniques based on previously proposed methods for PM machines are applied on the studied motor and evaluated by using non-linear three-dimensional time-stepping finite element analysis; three novel, optimised techniques are then presented. The techniques presented are based on the minimisation of the variation in... 

    Design and analysis of an elliptical-shaped linear ultrasonic motor

    , Article Sensors and Actuators, A: Physical ; Volume 278 , 2018 , Pages 67-77 ; 09244247 (ISSN) Sanikhani, H ; Akbari, J ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A linear ultrasonic motor (LUSM) with an elliptical-shaped metallic stator and two orthogonal vibration modes is presented in this research. The driving tip's desired vibration is generated by the excitation of two piezoelectric actuators installed inside the stator by two sinusoidal voltages with ±[Formula presented] phase difference. The working principle of the motor is described and mathematically formulated. Furthermore, finite element analysis and parametric optimization are performed to finalize the motor design. A prototype of the motor is fabricated and evaluated by identification and operation tests. The experimental and numerical characteristic curves of the motor are presented... 

    Dynamics and control of a novel microrobot with high maneuverability

    , Article Robotica ; Volume 39, Issue 10 , 2021 , Pages 1729-1738 ; 02635747 (ISSN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    In this study, we introduce a novel three-dimensional micro-scale robot capable of swimming in low Reynolds number. The proposed robot consists of three rotating disks linked via three perpendicular adjustable rods, actuated by three rotary and three linear motors, respectively. The robot mechanism has an important property which makes it superior to the previously designed micro swimmers. In fact, our goal is designing a micro swimmer which its controllability matrix has full rank and hence it will be capable to perform any desired maneuver in space. After introducing the mechanism and derivation of the dynamical equations of motion, we propose a control method to steer the robot to the... 

    Electromagnetic design optimization of a modular linear flux-reversal motor

    , Article Electric Power Components and Systems ; Volume 44, Issue 18 , 2016 , Pages 2112-2120 ; 15325008 (ISSN) Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Although modular linear flux-reversal permanent magnet motors are widely attractive for high reliability urban rail transit because of their advantages such as high power density, high reliability, low permanent magnet flux leakage problem, and improved fault-tolerant capability, they suffer from high thrust ripples. In this article the authors use a layer model for defining different optimization problems to improve thrust density, efficiency, and thrust ripples, independently and simultaneously. Design variables are chosen based on the sensitivity analysis of different objective functions relative to motor different geometrical parameters and some constraints are taken into account to... 

    Design Optimization of a Ladder Secondary Single-Sided Linear Induction Motor for Improved Performance

    , Article IEEE Transactions on Energy Conversion ; Volume 30, Issue 4 , 2015 , Pages 1595-1603 ; 08858969 (ISSN) Ravanji, M. H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Abstract
    In this paper, design and optimization of a ladder-type single-sided linear induction motor (Ladder SLIM) for machine tool applications is investigated. High-speed linear induction machines suffer from the end-effect phenomenon, which can reduce the thrust and result in declined output characteristics. Although it is common to consider this phenomenon in high-speed applications, it is essential to take it into account in the design and analysis of low-speed low-air-gap linear machines. In addition, Ladder SLIMs have significant flux density ripples, and using skewed bars for secondary of the machine is a common solution for it. Therefore, providing required equations, an algorithm for...