Loading...
Search for: liquid-drainage
0.01 seconds

    Pore-Level Observation of Free Gravity Drainage of Oil in Fractured Porous Media

    , Article Transport in Porous Media ; Volume 87, Issue 2 , 2011 , Pages 561-584 ; 01693913 (ISSN) Mashayekhizadeh, V ; Ghazanfari, M. H ; Kharrat, R ; Dejam, M ; Sharif University of Technology
    2011
    Abstract
    This work presents results from two sets of experiments conducted to study, in pore level, the role of fracture aperture and tilt angle on the stability of liquid bridges and the shape of a front during free gravity drainage process. Glass micromodels of two different aperture sizes were used to monitor the mechanism of gravity drainage of air-crude oil system, rotating around a bottom corner to create different tilting angles. Oil content within the matrix blocks was determined as a function of time using a series of images obtained during the experiments, from which net drainage rate from the upper and lower matrix blocks is calculated. Liquid bridges are more frequent but less stable at... 

    A study of liquid drainage rate from foam with population balance equation: impact of bubble evolution

    , Article Colloid and Polymer Science ; Volume 296, Issue 6 , 2018 , Pages 1097-1108 ; 0303402X (ISSN) Shafiei, Y ; Ghazanfari, M. H ; Seyyedsar, S. M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    A significant challenge of foam injection is the stability of the foam in formations. In this study, the modeling of liquid drainage and the impact of some parameters (i.e., concentration of surfactants, nano-particles, and monovalent ions) on the liquid drainage rate and foam stability were investigated by using a population balance model. First, foam bubble size distribution was experimentally measured and used as input for the population balance model. The population balance equations were solved numerically, and the number density of bubble size distribution as a function of time was obtained. Then, the liquid drainage rate was calculated using volume balance equations. It is shown that...