Loading...
Search for: liquid-jet
0.005 seconds

    Continuous and pulsed experiments with numerical simulation to dissect pituitary gland tumour by using liquid jet

    , Article Engineering Letters ; Volume 25, Issue 3 , 2017 , Pages 348-353 ; 1816093X (ISSN) Alamoud, A. H ; Baillot, E ; Belabbas, C ; Samimi Ardestani, H. S ; Bahai, H ; Baldit, A ; Chizari, M ; Sharif University of Technology
    International Association of Engineers  2017
    Abstract
    Endoscopic endonasal surgery is a minimal invasive surgery that has been used to dissect pituitary gland tumour via curettes with the help of endoscope. However, this type of surgery has a high risk of failure because curettes may cause damages to blood vessels and optical nerves that lead to more complication for the patient. The aim of this study is to develop a new technique to dissect the tumour by using liquid jet. A series of experimental tests have been performed on animal tissue to study the effect of liquid pressure and nozzle diameter on dissecting and cutting the tissue. Continuous/pulsed liquid jet used with variable nozzle diameters, distances, pressures and angles. The study... 

    Multiphase simulation of liquid jet breakup using smoothed particle hydrodynamics

    , Article International Journal of Modern Physics C ; Volume 28, Issue 4 , 2017 ; 01291831 (ISSN) Pourabdian, M ; Omidvar, P ; Morad, M. R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    This paper deals with numerical modeling of two-phase liquid jet breakup using the smoothed particle hydrodynamics (SPH) method. Simulation of multiphase flows involving fluids with a high-density ratio causes large pressure gradients at the interface and subsequently divergence of numerical solutions. A modified procedure extended by Monaghan and Rafiee is employed to stabilize the sharp interface between the fluids. Various test cases such as Rayleigh-Taylor instability, two-phase still water and air bubble rising in water have been conducted, by which the capability of accurately capturing the physics of multiphase flows is verified. The results of these simulations are in a good... 

    Stability and breakup of liquid jets: Effect of slight gaseous crossflows and electric fields

    , Article Chemical Engineering Science ; Volume 165 , 2017 , Pages 89-95 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Instability and breakup of a liquid jet under the influence of a gaseous crossflow in the presence of an electric field is investigated. A dispersion relation for disturbances on the jet surface is derived for the combined effects based on pioneer linear stability analysis for low speed limits. Effects of Weber, Bond and Ohnesorge numbers on the growth rate of disturbances are studied. The theoretical analysis developed for breakup length is used for comparisons with experimentally obtained breakup lengths. Measured breakup lengths were predicted satisfactorily by the linear theory in the region of low crossflow velocities (0–4 m/s) and electric field intensities (0–3×105 V/m). © 2017... 

    Axis-switching and breakup of rectangular liquid jets

    , Article International Journal of Multiphase Flow ; Volume 126 , May , 2020 Morad, M. R ; Nasiri, M ; Amini, G ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The behavior of low-speed liquid jets emerging from rectangular orifices into a quiescent air is studied numerically. After ejection, the rectangular cross-section transforms into an elliptical form along the jet and while axis-switching includes elliptical cross-sections only, the rectangular shape never establishes again. The optimum wavenumber, corresponding to the most dominant wave, is found to be greater in orifices with higher aspect ratios and, as a result, breakup length of the jet will be shorter. The breakup length decreases exponentially with the initial amplitude of disturbances. Moreover, it is observed that the form of final breakup leads to elimination of the satellite... 

    High-speed imaging database of water jet disintegration Part II: Temporal analysis of the primary breakup

    , Article International Journal of Multiphase Flow ; Volume 145 , 2021 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Berrocal, E ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper is Part II of a series of articles focusing on the disintegration of a cylindrical (Ø=0.60 mm diameter) water jet in a quiescent atmosphere, from Rayleigh to early atomization breakup regimes. Liquid fluorescence high-speed imaging is used here, instead of shadowgraphy, providing a more faithful representation of liquid jet breakup dynamics as described in Part I (Roth et al., 2021). Using these data, the aim of this article is to perform a temporal analysis of the primary breakup process and to investigate the variation of breakup length in the time-domain, under each breakup regime. The results indicate that the liquid jet velocity at the onset of primary breakup oscillates... 

    3D Numerical Investigation of Elliptical Orifices Effect with Different Aspect Ratios on Liquid Jet Breakup

    , M.Sc. Thesis Sharif University of Technology Nasiri, Mohammad Mahdi (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    In this research, the numerical simulation of liquid jet ejecting for a series of elliptical orifices into gaseous phase with different aspect ratios, at Rayleigh flow regime and in a range of Weber numbers has been performed.
    For simulations, the OpenFoam software was utilized, which its multiphase flow simulation solvers are based on volume of fluid (VOF) method. In order to achieve the most accurate results for axis-switching phenomenon and jet breakup length, the dynamic mesh refinement was used for all the examined cases. The results, which were validated with recent experimental and numerical works, indicate that jet breakup length raises by increasing Weber number from 20 to 300.... 

    Numerical Modeling of Liquid Jet Breakup Using SPH Method

    , M.Sc. Thesis Sharif University of Technology Pourabdian, Majid (Author) ; Morad , Mohammad Reza (Supervisor) ; Omidvar, Pourya (Supervisor)
    Abstract
    Smoothed Particle Hydrodynamics (SPH) is a numerical Lagrangian meshless method which has numerous applications in astrophysics, hydrodynamics, free-surface flows, jets and sprays formation. Atomization of continuum liquid to fine droplets or in other words, liquid breakup processes are emerged in many engineering applications such as fuel sprays inside the combustion chamber of internal combustion engines that sizes of produced sprays significantly influence the engine’s efficiency. This research is accomplished to investigate the one-phase and two-phase flows of liquid jet breakup. For this aim, an open source code called SPHysics which solves the flow field by SPH method is utilized. This... 

    Experimental Study of Simple Orifice Geometry Variation on Liquid Jet Disintegration in a Gaseous Cross Flow

    , M.Sc. Thesis Sharif University of Technology Khosrobeygi, Hamed (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    In this thesis, elliptical liquid jet breakup in crossflow has been investigated. To do this, two elliptical nozzle with different aspect ratio were built. First, the effective and important dimensionless numbers were extracted. Then, the physical aspect of the question was analyzed. All the experiments have been done in atmospheric conditions with water fluid, air as the liquid jet, and gas crossflow respectively.To create crossflow, a square cross section channel and one blower which are set in the beginning of the channel were made use of. Water is injected into air crossflow by the injector installed under the channel. The system used in revealing the crossflow is shadowgraphy system.... 

    Investigation of Flow Formed by two Impinging Jets

    , M.Sc. Thesis Sharif University of Technology Dolatkhahi, Hamed (Author) ; Kebriaei, Azadeh (Supervisor)
    Abstract
    Due to importance of designing geometry and working condition of injector it is necessary that by testing cold flow, we gain better understanding of atomization characteristics and in particular initial atomization close to injector which defines the spray characteristics. Up to today experimental measurements in the high density zone close to injector has been difficult to to optical limitations and also analytical solutions of atomization process is limited due to complexity and highly nonlinear equations. Numerical solutions are also under development and researchers have recently done researches and simulations. In this field the modeling of liquid sheet collapse has challenged numerical... 

    Experimental Study of Liquid Sheet Breakup in Cross Flow

    , Ph.D. Dissertation Sharif University of Technology Olyaei, Ghader (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    Injecting liquid fuel into the cross flow of air provides high penetration of the liquid, rapid mixing with air, and increased efficiency. This method has widespread applications in the propulsion systems of gas turbines, scramjets, turbine blade cooling, and fuel injection for engine afterburners. One of the design strategies for future aircraft engines is to reduce pollutants using fuel spray into the cross flow instead of direct jet fuel injection and using renewable energy sources. The applications of cross flows include injecting fluid through rotating pressure injectors in exhaust flows, injecting fluid through pressure-rotating injectors in radial injectors, and using slinger... 

    Penetration of elliptical liquid jets in low-speed crossflow

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 141, Issue 1 , 2019 ; 00982202 (ISSN) Morad, M. R ; Khosrobeygi, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    Trajectory and penetration of elliptical liquid jets emerged into a low-speed crossflow of air are studied. The jets are introduced to the crossflow at different momentum ratios ranging from 1 to 300. The images are analyzed to obtain the trajectories of the outer boundary of the jets for two different aspect ratios. An empirical correlation is proposed for the present injector geometries and for the range of momentum ratio, Weber, and Reynolds numbers used in this study. Finally, a theoretical model for the trajectory of the liquid column for an initially elliptical liquid emerging into a crossflow is presented, and the associated drag coefficients are obtained for a precise trajectory... 

    Penetration of elliptical liquid jets in low-speed crossflow

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 141, Issue 1 , 2019 ; 00982202 (ISSN) Morad, M. R ; Khosrobeygi, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    Trajectory and penetration of elliptical liquid jets emerged into a low-speed crossflow of air are studied. The jets are introduced to the crossflow at different momentum ratios ranging from 1 to 300. The images are analyzed to obtain the trajectories of the outer boundary of the jets for two different aspect ratios. An empirical correlation is proposed for the present injector geometries and for the range of momentum ratio, Weber, and Reynolds numbers used in this study. Finally, a theoretical model for the trajectory of the liquid column for an initially elliptical liquid emerging into a crossflow is presented, and the associated drag coefficients are obtained for a precise trajectory... 

    Numerical modeling of instability and breakup of elliptical liquid jets

    , Article AIAA Journal ; Volume 58, Issue 6 , June , 2020 , Pages 2442-2449 Morad, M. R ; Nasiri, M ; Amini, G ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    Numerical simulations are performed to provide an in-depth insight into the effect of instabilities on liquid jets discharging from elliptical orifices. The axis-switching phenomenon and breakup are simulated and characterized under the effect of disturbances imposed at the nozzle exit. The simulations are based on the volume of fluid approach and an adaptive meshing. A range of orifice aspect ratios from 1 to 4 at the Rayleigh breakup regime is considered. The evolution of the jet cross section and axis switching under the influence of disturbances is compared with that of nonperturbed elliptical jets. It is found that the axis-switching repetition and breakup length exponentially decrease... 

    Numerical Study of Spray Formation in Slinger Injection

    , M.Sc. Thesis Sharif University of Technology Karimi, Hamed (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    In this M.S. dissertation numerical study of slinger fuel distributer has been studied. This type of atomizer has been used in mini turbojets like Teledyne CAE.
    The main purpose of this work was obtaining spray structure of slinger atomizers. This goal was achieved by implementing a UDF code in FLUENT® software to model the primary atomization that include variation of fluid from exit of slinger disk bores till formation of primary droplet. In FLUENT® the DPM method and its ability to utilizing Lagrangian approaches have been used. The result of this model is validated by the data from experimental test that can be found in Articles. This is the first time that spray structure of slinger... 

    Experimental Investigation of Liquid Jet Break-up In Cross Flow by Effervesvent Injector

    , M.Sc. Thesis Sharif University of Technology Ahmadsadeghi, Payam (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    In This Study break up and trajectory of aerated liquid jet in subsonic cross flow has been investigated. An effervescent two phase flow injector has been used with two different diameters for its external orifice. The effects of non-dimensional parameters on the trajectory of aerated liquid jet were evaluated. Water was used as the fluid for the purpose of producing liquid jet. Air was used to produce gaseous phase in the injector and the cross flow as well.
    A duct with a square cross section and a blower in the inlet of the duct were used to produce the cross flow. Mixture of air and water was injected into the cross flow by the injector installed at the bottom of the duct. Shadowgraph... 

    Numerical Simulation of Liquid Jet and Bubble Collapse Interaction near the Wall

    , M.Sc. Thesis Sharif University of Technology Heshmati, Ehsan (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    Bubble collapse near a rigid wall with rapid and non-spherical compression of the internal gas can lead to destructive and unfavorable effects such as erosion, noise, and a fall-off in the performance of devices. Despite the fact that several investigations on this phenomena have been carried out under various conditions, studies indicate that the collapse of a single cavitation bubble next to the liquid jet injected from the wall's side and their interaction have not been studied so far. To achieve this goal, the present study deals with the three-dimensional simulation of the two-phase flow field from the Eulerian point of view. OpenFOAM has been used to solve the equations of conservation... 

    A parametric study using two design methodologies for pressure jet and swirl injectors

    , Article IEEE Aerospace Conference Proceedings ; 2012 ; 1095323X (ISSN) ; 9781457705564 (ISBN) Mazaheri, K ; Morad, M. R ; Shakeri, A. R ; Sharif University of Technology
    2012
    Abstract
    One of the most important subsystems in the air-breathing engines is the atomizers, which break the fuel into many droplets. It is well known that atomization quality has a significant influence on combustion characteristics such as stability limits, efficiency, and pollutant emission. Both jet and swirl injectors are applicable in gas turbine engines. The latter have been widely used for combustion chambers and the former are usually employed for fuel injection in the afterburner part. Since experimental and numerical study of atomizers could be complex and costly, a design methodology of atomizers based on empirical relations is still very advantageous and effective in reducing...